skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4926850· OSTI ID:22581323
 [1];  [2]
  1. Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan and Department of Radiology, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan)
  2. Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan)

Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signals for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors’ method based on the use of a commercially available color camera is useful to evaluate and understand the display performances of both monochrome and color LCDs in radiology departments.

OSTI ID:
22581323
Journal Information:
Medical Physics, Vol. 42, Issue 8; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English