On the 4D generalized Proca action for an Abelian vector field
Abstract
We summarize previous results on the most general Proca theory in 4 dimensions containing only firstorder derivatives in the vector field (secondorder at most in the associated StÃ¼ckelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by secondorder equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with secondorder derivatives of the StÃ¼ckelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/14757516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/14757516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual Ftilde{sub μν}.
 Authors:

 Institut d’Astrophysique de Paris, UMR 7095, UPMC Université Paris 6 et CNRS,98 bis boulevard Arago, 75014 Paris (France)
 Departamento de Física, Universidad Antonio Nariño,Cra 3 Este # 47A15, Bogotá D.C. 110231 (Colombia)
 Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A15, Bogotá D.C. 110231 (Colombia)
 Publication Date:
 Sponsoring Org.:
 SCOAP3, CERN, Geneva (Switzerland)
 OSTI Identifier:
 22572152
 Resource Type:
 Journal Article
 Journal Name:
 Journal of Cosmology and Astroparticle Physics
 Additional Journal Information:
 Journal Volume: 2016; Journal Issue: 09; Other Information: PUBLISHERID: JCAP09(2016)026; OAI: oai:repo.scoap3.org:17219; ccby Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 14757516
 Country of Publication:
 United States
 Language:
 English
 Subject:
 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACTION INTEGRAL; DEGREES OF FREEDOM; EQUATIONS OF MOTION; FOURDIMENSIONAL CALCULATIONS; GRAVITATION; P INVARIANCE; VECTOR FIELDS
Citation Formats
Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I34151, Trieste. On the 4D generalized Proca action for an Abelian vector field. United States: N. p., 2016.
Web. doi:10.1088/14757516/2016/09/026.
Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, & Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I34151, Trieste. On the 4D generalized Proca action for an Abelian vector field. United States. doi:10.1088/14757516/2016/09/026.
Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I34151, Trieste. Mon .
"On the 4D generalized Proca action for an Abelian vector field". United States. doi:10.1088/14757516/2016/09/026.
@article{osti_22572152,
title = {On the 4D generalized Proca action for an Abelian vector field},
author = {Allys, Erwan and Almeida, Juan P. Beltrán and Peter, Patrick and Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris and Rodríguez, Yeinzon and Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002 and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I34151, Trieste},
abstractNote = {We summarize previous results on the most general Proca theory in 4 dimensions containing only firstorder derivatives in the vector field (secondorder at most in the associated StÃ¼ckelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by secondorder equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with secondorder derivatives of the StÃ¼ckelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/14757516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/14757516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual Ftilde{sub μν}.},
doi = {10.1088/14757516/2016/09/026},
journal = {Journal of Cosmology and Astroparticle Physics},
issn = {14757516},
number = 09,
volume = 2016,
place = {United States},
year = {2016},
month = {9}
}