skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the 4D generalized Proca action for an Abelian vector field

Abstract

We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/1475-7516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/1475-7516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual F-tilde{sub μν}.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6]
  1. Institut d’Astrophysique de Paris, UMR 7095, UPMC Université Paris 6 et CNRS,98 bis boulevard Arago, 75014 Paris (France)
  2. Departamento de Física, Universidad Antonio Nariño,Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)
  3. (France)
  4. Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)
  5. (Colombia)
  6. (Italy)
Publication Date:
Sponsoring Org.:
SCOAP3, CERN, Geneva (Switzerland)
OSTI Identifier:
22572152
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2016; Journal Issue: 09; Other Information: PUBLISHER-ID: JCAP09(2016)026; OAI: oai:repo.scoap3.org:17219; cc-by Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACTION INTEGRAL; DEGREES OF FREEDOM; EQUATIONS OF MOTION; FOUR-DIMENSIONAL CALCULATIONS; GRAVITATION; P INVARIANCE; VECTOR FIELDS

Citation Formats

Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste. On the 4D generalized Proca action for an Abelian vector field. United States: N. p., 2016. Web. doi:10.1088/1475-7516/2016/09/026.
Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, & Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste. On the 4D generalized Proca action for an Abelian vector field. United States. doi:10.1088/1475-7516/2016/09/026.
Allys, Erwan, Almeida, Juan P. Beltrán, Peter, Patrick, Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris, Rodríguez, Yeinzon, Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002, and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste. Mon . "On the 4D generalized Proca action for an Abelian vector field". United States. doi:10.1088/1475-7516/2016/09/026.
@article{osti_22572152,
title = {On the 4D generalized Proca action for an Abelian vector field},
author = {Allys, Erwan and Almeida, Juan P. Beltrán and Peter, Patrick and Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris and Rodríguez, Yeinzon and Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002 and Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste},
abstractNote = {We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/1475-7516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/1475-7516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual F-tilde{sub μν}.},
doi = {10.1088/1475-7516/2016/09/026},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 09,
volume = 2016,
place = {United States},
year = {Mon Sep 19 00:00:00 EDT 2016},
month = {Mon Sep 19 00:00:00 EDT 2016}
}