skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the evaporation of solar dark matter: spin-independent effective operators

Abstract

As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.

Authors:
 [1]; ; ;  [2]
  1. Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Road, Beijing, 100049 (China)
  2. Kavli Institute for Theoretical Physics China,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Zhong Guan Cun Street 55#, Beijing, 100190 (China)
Publication Date:
Sponsoring Org.:
SCOAP3, CERN, Geneva (Switzerland)
OSTI Identifier:
22572150
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2016; Journal Issue: 09; Other Information: PUBLISHER-ID: JCAP09(2016)018; OAI: oai:repo.scoap3.org:17133; cc-by Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ASTROPHYSICS; EVAPORATION; FIELD OPERATORS; MASS; MONTE CARLO METHOD; NEUTRINO DETECTION; NONLUMINOUS MATTER; NUCLEON REACTIONS; SOLAR NEUTRINOS; SPIN

Citation Formats

Liang, Zheng-Liang, Wu, Yue-Liang, Yang, Zi-Qing, and Zhou, Yu-Feng. On the evaporation of solar dark matter: spin-independent effective operators. United States: N. p., 2016. Web. doi:10.1088/1475-7516/2016/09/018.
Liang, Zheng-Liang, Wu, Yue-Liang, Yang, Zi-Qing, & Zhou, Yu-Feng. On the evaporation of solar dark matter: spin-independent effective operators. United States. doi:10.1088/1475-7516/2016/09/018.
Liang, Zheng-Liang, Wu, Yue-Liang, Yang, Zi-Qing, and Zhou, Yu-Feng. 2016. "On the evaporation of solar dark matter: spin-independent effective operators". United States. doi:10.1088/1475-7516/2016/09/018.
@article{osti_22572150,
title = {On the evaporation of solar dark matter: spin-independent effective operators},
author = {Liang, Zheng-Liang and Wu, Yue-Liang and Yang, Zi-Qing and Zhou, Yu-Feng},
abstractNote = {As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.},
doi = {10.1088/1475-7516/2016/09/018},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 09,
volume = 2016,
place = {United States},
year = 2016,
month = 9
}
  • We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
  • An energy threshold of (220{+-}10) eV was achieved at an efficiency of 50% with a four-channel ultralow-energy germanium detector, each with an active mass of 5 g. This provides a unique probe to weakly interacting massive particles (WIMP) dark matter with mass below 10 GeV. With a data acquisition live time of 0.338 kg-day at the Kuo-Sheng Laboratory, constraints on WIMPs in the galactic halo were derived. The limits improve over previous results on both spin-independent WIMP-nucleon and spin-dependent WIMP-neutron cross-sections for WIMP mass between 3 and 6 GeV. Sensitivities for full-scale experiments are projected. This detector technique makes themore » unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.« less
  • We study the correlation between spin-independent and spin-dependent scattering in the context of minimal supersymmetric standard model neutralino dark matter for both thermal and nonthermal histories. We explore the generality of this relationship with reference to other models. We discuss why either fine-tuning or numerical coincidences are necessary for the correlation to break down. We derive upper bounds on spin-dependent scattering mediated by a Z{sup 0} boson.
  • In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the uppermore » limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.« less
  • We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 kg-d for germanium and 12 kg-d for silicon targets after cuts, averaged over recoil energies 10-100 keV for a WIMP mass of 60GeV/c{sup 2}. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6more » x 10{sup -43} cm{sup 2} from Ge, and 3 x 10{sup -42} cm{sup 2} from Si, for a WIMP mass of 60GeV/c{sup 2}. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results, and constrains predictions of supersymmetric models.« less