skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?

Abstract

Purpose: AAPM task groups 40/142 have provided an invaluable set of goals for physicists designing QA programs, attempting to standardize what would otherwise likely be a highly variable phenomenon across institutions. However, with the complexity of modalities such as VMAT, we hypothesize that following these guidelines to the letter might still allow unacceptable dose discrepancies. To explore this hypothesis we simulated machines bordering on QA acceptability, and calculated the effect on patient plans. Methods: Two errant machines were simulated in Aria/Eclipse, each just within task group criteria for output, percent depth dose, beam profile, gantry and collimator rotations, and jaw and MLC positions. One machine minimized dose to the PTV (machine A) and the other maximized dose to the OARs (machine B). Clinical treatment plans (3-phase prostate, n=3; hypofractionated lung, n=1) were calculated on these machines and the dose distributions compared. A prostate case was examined for contribution of error sources and evaluated using delivery QA data. Results: The prostate plans showed mean decreases in target D95 of 9.9% of prescription dose on machine A. On machine B, The rectal and bladder V70Gy each increased by 7.1 percentage points, while their V45Gy increased by 16.2% and 15.0% respectively. In themore » lung plan, the target D95 decreased by 12.8% and the bronchial tree Dmax increased by 21% of prescription dose, on machines A and B. One prostate plan showed target dose errors of 3.8% from MLC changes, 2% from output, ∼3% from energy and ∼0.5% from other factors. This plan achieved an 88.4% gamma passing rate using 3%/3mm using ArcCHECK. Conclusion: In the unlikely event that a machine exhibits all maximum errors allowed by TG 40/142, unacceptably large changes in dose delivered are possible especially in highly modulated VMAT plans, despite the machine passing routine QA.« less

Authors:
; ; ;  [1]
  1. Rush University Medical Center, Chicago, IL (United States)
Publication Date:
OSTI Identifier:
22548330
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BEAM MONITORING; BEAM PROFILES; BLADDER; COLLIMATORS; DEPTH DOSE DISTRIBUTIONS; ERRORS; LUNGS; PATIENTS; PROSTATE; RADIATION DOSES; RADIOTHERAPY; RECOMMENDATIONS; RECTUM; SIMULATION

Citation Formats

Templeton, A, Liao, Y, Redler, G, and Zhen, H. SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?. United States: N. p., 2015. Web. doi:10.1118/1.4924635.
Templeton, A, Liao, Y, Redler, G, & Zhen, H. SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?. United States. doi:10.1118/1.4924635.
Templeton, A, Liao, Y, Redler, G, and Zhen, H. 2015. "SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?". United States. doi:10.1118/1.4924635.
@article{osti_22548330,
title = {SU-E-T-273: Do Task Group External Beam QA Recommendations Guarantee Accurate Treatment Plan Dose Delivery?},
author = {Templeton, A and Liao, Y and Redler, G and Zhen, H},
abstractNote = {Purpose: AAPM task groups 40/142 have provided an invaluable set of goals for physicists designing QA programs, attempting to standardize what would otherwise likely be a highly variable phenomenon across institutions. However, with the complexity of modalities such as VMAT, we hypothesize that following these guidelines to the letter might still allow unacceptable dose discrepancies. To explore this hypothesis we simulated machines bordering on QA acceptability, and calculated the effect on patient plans. Methods: Two errant machines were simulated in Aria/Eclipse, each just within task group criteria for output, percent depth dose, beam profile, gantry and collimator rotations, and jaw and MLC positions. One machine minimized dose to the PTV (machine A) and the other maximized dose to the OARs (machine B). Clinical treatment plans (3-phase prostate, n=3; hypofractionated lung, n=1) were calculated on these machines and the dose distributions compared. A prostate case was examined for contribution of error sources and evaluated using delivery QA data. Results: The prostate plans showed mean decreases in target D95 of 9.9% of prescription dose on machine A. On machine B, The rectal and bladder V70Gy each increased by 7.1 percentage points, while their V45Gy increased by 16.2% and 15.0% respectively. In the lung plan, the target D95 decreased by 12.8% and the bronchial tree Dmax increased by 21% of prescription dose, on machines A and B. One prostate plan showed target dose errors of 3.8% from MLC changes, 2% from output, ∼3% from energy and ∼0.5% from other factors. This plan achieved an 88.4% gamma passing rate using 3%/3mm using ArcCHECK. Conclusion: In the unlikely event that a machine exhibits all maximum errors allowed by TG 40/142, unacceptably large changes in dose delivered are possible especially in highly modulated VMAT plans, despite the machine passing routine QA.},
doi = {10.1118/1.4924635},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = 2015,
month = 6
}
  • The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutesmore » on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.« less
  • The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around themore » world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at {sup 60}Co energy, N{sub D,w}{sup 60{sub C}{sub o}}, together with the theoretical beam quality conversion coefficient k{sub Q} for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of radiochromic film for electrons is addressed, and radiographic film that is no longer available has been replaced by film that is available. Realistic stopping-power data are incorporated when appropriate along with enhanced tables of electron fluence data. A larger list of clinical applications of electron beams is included in the full TG-70 report available at http://www.aapm.org/pubs/reports. Descriptions of the techniques in the clinical sections are not exhaustive but do describe key elements of the procedures and how to initiate these programs in the clinic. There have been no major changes since the TG-25 report relating to flatness and symmetry, surface dose, use of thermoluminescent dosimeters or diodes, virtual source position designation, air gap corrections, oblique incidence, or corrections for inhomogeneities. Thus these topics are not addressed in the TG-70 report.« less
  • Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis {sup 192}Ir and Novoste {sup 90}Sr/{sup 90}Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of themore » dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant {sup 32}P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.« less
  • The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are notmore » addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU/ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.« less