skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-26: A Dosimetric Comparison of Two Treatment Setups for Lung Stereotactic Body Radiation Therapy (SBRT) Patients

Abstract

Purpose: To assess the feasibility of treating lung SBRT patients with the ipsilateral arm adducted beside the body instead of elevated above the head. Methods: Patients receiving lung SBRT at our institution are typically treated with both arms raised above their head. However, several patients had difficulty maintaining their arms in an elevated position. In this study, lung SBRT patients who underwent PET-CT imaging with an adducted ipsilateral arm were selected to investigate the dosimetric effects of this treatment setup. PET-CT datasets were fused with treatment planning CT images to simulate the adducted arm position. One VMAT treatment plan was created per patient using the Pinnacle treatment planning system. Plans were optimized to achieve minimal dose to the ipsilateral arm while keeping the target coverage and critical structure doses within clinical limits. The target dose coverage, conformity index (CI) for the target, and DVHs of critical structures for the adducted arm plan were calculated. These parameters were compared with the clinical plan and reported along with the mean and maximum doses of the ipsilateral arm. Results: The target coverage, CI and DVHs for the adducted arm plans of two patients (one with peripheral lesion and one with central lesion) weremore » comparable with the clinical plans. Dose constraints for the chest wall limited further reduction of ipsilateral arm doses for the peripheral lesion plan. The mean ipsilateral arm doses for the central and peripheral lesions were 0.33 Gy and 2.4 Gy, respectively. The maximum ipsilateral arm doses for the central and peripheral lesions were 1.0 Gy and 6.2 Gy, respectively. Conclusion: The results suggested patients with central lung SBRT tumors were more suitable for treatment with the adducted arm position. More patients with various lung tumor locations will be studied to find optimal tumor locations for treatment with this arm position.« less

Authors:
; ; ; ; ; ;  [1]
  1. UT MD Anderson Cancer Center, Houston, TX (United States)
Publication Date:
OSTI Identifier:
22545161
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; CHEST; COMPUTERIZED TOMOGRAPHY; DATASETS; HEAD; LUNGS; NEOPLASMS; PATIENTS; PLANNING; POSITRON COMPUTED TOMOGRAPHY; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Lewis, D, Wang, X, Gao, S, Nitsch, P, Pollard, J, Sadagopan, R, and Balter, P. SU-E-T-26: A Dosimetric Comparison of Two Treatment Setups for Lung Stereotactic Body Radiation Therapy (SBRT) Patients. United States: N. p., 2015. Web. doi:10.1118/1.4924387.
Lewis, D, Wang, X, Gao, S, Nitsch, P, Pollard, J, Sadagopan, R, & Balter, P. SU-E-T-26: A Dosimetric Comparison of Two Treatment Setups for Lung Stereotactic Body Radiation Therapy (SBRT) Patients. United States. doi:10.1118/1.4924387.
Lewis, D, Wang, X, Gao, S, Nitsch, P, Pollard, J, Sadagopan, R, and Balter, P. Mon . "SU-E-T-26: A Dosimetric Comparison of Two Treatment Setups for Lung Stereotactic Body Radiation Therapy (SBRT) Patients". United States. doi:10.1118/1.4924387.
@article{osti_22545161,
title = {SU-E-T-26: A Dosimetric Comparison of Two Treatment Setups for Lung Stereotactic Body Radiation Therapy (SBRT) Patients},
author = {Lewis, D and Wang, X and Gao, S and Nitsch, P and Pollard, J and Sadagopan, R and Balter, P},
abstractNote = {Purpose: To assess the feasibility of treating lung SBRT patients with the ipsilateral arm adducted beside the body instead of elevated above the head. Methods: Patients receiving lung SBRT at our institution are typically treated with both arms raised above their head. However, several patients had difficulty maintaining their arms in an elevated position. In this study, lung SBRT patients who underwent PET-CT imaging with an adducted ipsilateral arm were selected to investigate the dosimetric effects of this treatment setup. PET-CT datasets were fused with treatment planning CT images to simulate the adducted arm position. One VMAT treatment plan was created per patient using the Pinnacle treatment planning system. Plans were optimized to achieve minimal dose to the ipsilateral arm while keeping the target coverage and critical structure doses within clinical limits. The target dose coverage, conformity index (CI) for the target, and DVHs of critical structures for the adducted arm plan were calculated. These parameters were compared with the clinical plan and reported along with the mean and maximum doses of the ipsilateral arm. Results: The target coverage, CI and DVHs for the adducted arm plans of two patients (one with peripheral lesion and one with central lesion) were comparable with the clinical plans. Dose constraints for the chest wall limited further reduction of ipsilateral arm doses for the peripheral lesion plan. The mean ipsilateral arm doses for the central and peripheral lesions were 0.33 Gy and 2.4 Gy, respectively. The maximum ipsilateral arm doses for the central and peripheral lesions were 1.0 Gy and 6.2 Gy, respectively. Conclusion: The results suggested patients with central lung SBRT tumors were more suitable for treatment with the adducted arm position. More patients with various lung tumor locations will be studied to find optimal tumor locations for treatment with this arm position.},
doi = {10.1118/1.4924387},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected formore » the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.« less
  • Purpose: To evaluate performance of three commercially available treatment planning systems for stereotactic body radiation therapy (SBRT) of lung cancer using the following algorithms: Boltzmann transport equation based algorithm (AcurosXB AXB), convolution based algorithm Anisotropic Analytic Algorithm (AAA); and Monte Carlo based algorithm (XVMC). Methods: A total of 10 patients with early stage non-small cell peripheral lung cancer were included. The initial clinical plans were generated using the XVMC based treatment planning system with a prescription of 54Gy in 3 fractions following RTOG0613 protocol. The plans were recalculated with the same beam parameters and monitor units using AAA and AXBmore » algorithms. A calculation grid size of 2mm was used for all algorithms. The dose distribution, conformity, and dosimetric parameters for the targets and organs at risk (OAR) are compared between the algorithms. Results: The average PTV volume was 19.6mL (range 4.2–47.2mL). The volume of PTV covered by the prescribed dose (PTV-V100) were 93.97±2.00%, 95.07±2.07% and 95.10±2.97% for XVMC, AXB and AAA algorithms, respectively. There was no significant difference in high dose conformity index; however, XVMC predicted slightly higher values (p=0.04) for the ratio of 50% prescription isodose volume to PTV (R50%). The percentage volume of total lungs receiving dose >20Gy (LungV20Gy) were 4.03±2.26%, 3.86±2.22% and 3.85±2.21% for XVMC, AXB and AAA algorithms. Examination of dose volume histograms (DVH) revealed small differences in targets and OARs for most patients. However, the AAA algorithm was found to predict considerable higher PTV coverage compared with AXB and XVMC algorithms in two cases. The dose difference was found to be primarily located at the periphery region of the target. Conclusion: For clinical SBRT lung treatment planning, the dosimetric differences between three commercially available algorithms are generally small except at target periphery. XVMC and AXB algorithms are recommended for accurate dose estimation at tissue boundaries.« less
  • Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction andmore » a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research Fund for the AAPM Summer Undergraduate Fellowship Program.« less
  • Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after themore » same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye award; Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.« less
  • Purpose: SBRT shows excellent tumor control and toxicity rates for patients with locally advanced pancreatic cancer (PCA). Herein, we evaluate the feasibility of using VMAT with ABC for PCA SBRT. Methods: Nine PCA patients previously treated via SBRT utilizing 11-beam step-and-shoot IMRT technique in our center were retrospectively identified, among whom eight patients received 3300cGy in 5 fractions while one received 3000cGy in 5 fractions. A VMAT plan was generated on each patient’s planning CT in Pinnacle v9.8 on Elekta Synergy following the same PCA SBRT clinical protocol. Three partial arcs (182°–300°, 300°-60°, and 60°-180°) with 2°/4° control-point spacing weremore » used. The dosimetric difference between the VMAT and the original IMRT plans was analyzed. IMRT QA was performed for the VMAT plans using MapCheck2 in MapPHAN and the total delivery time was recorded. To mimic the treatment situation with ABC, where patients hold their breath for 20–30 seconds, the delivery was intentionally interrupted every 20–30 seconds. For each plan, the QA was performed with and without beam interruption. Gamma analysis (2%/2mm) was used to compare the planned and measured doses. Results: All VMAT plans with 2mm dose grid passed the clinic protocol with similar PTV coverage and OARs sparing, where PTV V-RxDose was 92.7±2.1% (VMAT) vs. 92.1±2.6% (IMRT), and proximal stomach V15Gy was 3.60±2.69 cc (VMAT) vs. 4.80±3.13 cc (IMRT). The mean total MU and delivery time of the VMAT plans were 2453.8±531.1 MU and 282.1±56.0 seconds. The gamma passing rates of absolute dose were 94.9±3.4% and 94.5±4.0% for delivery without and with interruption respectively, suggesting the dosimetry of VMAT delivery with ABC for SBRT won’t be compromised. Conclusion: This study suggests that PCA SBRT using VMAT with ABC is a feasible technique without compromising plan dosimetry. The combination of VMAT with ABC will potentially reduce the SBRT treatment time.« less