skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

Abstract

Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists of multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation pointsmore » which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

Authors:
; ; ; ;  [1]
  1. Willis-Knighton Medical Center, Shreveport, LA (United States)
Publication Date:
OSTI Identifier:
22545144
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANIMAL TISSUES; BRACHYTHERAPY; DOSE RATES; DOSIMETRY; ELECTRON BEAMS; FUNGI; LEGS; OPTIMIZATION; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; SKIN; TIBIA

Citation Formats

Syh, J, Syh, J, Patel, B, Wu, H, and Durci, M. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy. United States: N. p., 2015. Web. doi:10.1118/1.4924370.
Syh, J, Syh, J, Patel, B, Wu, H, & Durci, M. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy. United States. doi:10.1118/1.4924370.
Syh, J, Syh, J, Patel, B, Wu, H, and Durci, M. Mon . "SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy". United States. doi:10.1118/1.4924370.
@article{osti_22545144,
title = {SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy},
author = {Syh, J and Syh, J and Patel, B and Wu, H and Durci, M},
abstractNote = {Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists of multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.},
doi = {10.1118/1.4924370},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. Themore » CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.« less
  • Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.« less
  • Purpose: To validate in a water phantom the use of plastic scintillation detectors to measure dose to the urethra and the rectal wall during a clinically realistic low dose rate (LDR) brachytherapy implant. Methods: A template was designed to replicate a clinically realistic LDR brachytherapy prostate implant inside a water phantom. Twenty-two catheters were inserted, including one mimicking the urethra and another the rectal wall. The needles inserted in the remaining 20 catheters were composed of thin-walled nylon tubes in which I-125 radioactive seeds (Air Kerma Strengths of (0.328±0.020)U) were abutted together with plastic spacers to replicate a typical loading.more » A plastic scintillation detector (PSD) with a 5-mm long × 1-mm diameter sensitive element was first placed inside the urethra and 1-second measurements were performed for 60s after each needle implant. Measurements were also performed at multiple positions along the urethra once all the needles were inserted. The procedure was then repeated with the PSD placed at the rectal wall. Results: Individual dose-rates ranging from 0.07µGy/s to 1.5µGy/s were measured after each needle implant. The average absolute relative differences were (6.2±3.6)% and (6.9±6.5)% to the values calculated with the TG-43 formalism, for the urethra and rectal wall respectively. These results are within expectations from the error uncertainty budget once accounting for uncertainties in seeds’ strength and positioning. Interestingly, the PSD allowed for unplanned error detection as the study was performed. Finally, the measured dose after the full implant at different positions along the mimicked organs at risk were in agreement with TG-43 values for all of the positions tested. Conclusion: Plastic scintillation detectors could be used as in vivo detectors for LDR brachytherapy as they would provide accurate dose information after each needle implant as well as along the organs at risk at the end of the implant.« less
  • Purpose: To characterize dose distributions in high-dose-rate(HDR) surface brachytherapy using an Ir-125 source for different geometries, field sizes and topology of the clinical targets(CT). To investigate the depth doses at the central axis(CAX), edges of the treatment fields(E), and lateral dose distributions(L) present when using flap applicators in skin cancer treatments. Methods: When malignancies diagnosed on the skin are treated, various geometries of the CT require proper adaptation of the flap or custom-made applicators to the treatment site. Consequently, the dose at the depth on CAX and field edges changes with variation of the curvatures and size of the applicators.more » To assess the dose distributions, we created a total of 10 treatment plans(TP) for 10×10 and 20×20 field sizes(FS) with a step size of 1cm. The geometry of the applicators was: planar(PA), curved to 30(CA30) and 60(CA60) degrees with respect to the CAX, half-cylinder(HC), and cylindrical shape(CS). One additional TP was created in which the applicators were positioned to form a dome shape(DS) with a diameter of 16cm. This TP was used to emulate treatment of the average sized scalp. All TPs were optimized to deliver a prescription dose at 8mm equidistantly from the planes containing the dwell positions. This optimization is equivalent to the clinical arrangement since the SSD for the flap applicators is 5mm and the prescription depth is 3mm in the majority of clinical cases. Results: The depths (in mm) of the isodose lines were: FS(10×10):PA[90%(9.1CAX,8.0E,7.6L),50%(28.3CAX,20E,17.3L), 25%(51.1CAX,40E,27L)],CA30[90%(10.3CAX,8.2E,7.9L),50%(32.1CAX, 16.2E,15.8L),25%(61.3CAX,36.7E,31.8L)],CA60[90%(12.2CAX,6.1E,6.3L ),50%(47CAX,14E,16.6L),25%(70.8CAX,31.9E,35.4L)],HC[90%(11.1CA X,6.3E,7.3L),50%(38.3CAX,14.6E,16.1L),25%(66.2CAX,33.8E,34.2L)];FS (20×20):PA[90%(11.1CAX,9.0E,7.0L),50%(34.4CAX,21.9E,15.3L),25%(7 0.4CAX,50.9E,34.8L)],CA30[90%(10.9CAX,7.5E,7.1L),50%(38.8CAX,16. 7E,15.4L),25%(80.7CAX,39.9E,35.7L)],HC[90%(11.1CAX,10.9E,10.6L),5 0%(34.4CAX,38.8E,47.2L),25%(70.4CAX,80.7E,96.6L);DS[90%(12.1CA X,8.5E,6.8L),50%(60.6CAX,17.7E,15.8L),25%(109.6CAX,40.3E,34.3L)]. Conclusion: These results can be used for the approximate calculation and quick assessment of the radiation dose to the organs-at-risk at depth (heart,brain,thyroid, optical nerve) or at the surface distance from the CT (breast,eyes, gonads), and only the geometry of the CT needs to be measured. Understanding of the dose distributions in HDR surface brachytherapy may improve clinical decision making process.« less
  • Purpose: To investigate the dosimetric differences associated with the use of TO or TR applicators for cervical-cancer HDR BT. Methods: The records of all cervical-cancer patients treated with image-guided HDR BT in 2013 were reviewed. Image-based planning based on isodose line and DVH metrics inspections was performed following the GEC-ESTRO recommendations. CTV volume, CTV D90, and rectum, bladder and sigmoid D2cc were collected as % of the prescription dose (80Gy EQD2). Patients receiving both TO and TR were identified and plans were compared (paired analysis). A Student T-test was used to evaluate statistical significance (p ≤ 0.05). Results: Twenty-eight patientsmore » were identified (20 TR only, 4 TO only, 4 TO and TR), associated with 116 plans (109 TR, 7 TO). Overall metrics: CTV volume, 26.5±10.4 cm3 (TR) and 39.1±14.0 cm3 (TO, p < 0.01); CTV D90, 126±28% (TR) and 110±15% (TO, p = 0.15); rectum D2cc, 56±11% (TR) and 58±19% (TO, p = 0.91); bladder D2cc, 74±20% (TR) and 88±19% (TO, p = 0.09); sigmoid D2cc, 52±17% (TR) and 49±20% (TO, p = 0.63). The paired analysis results were: CTV volume, 37.3±11.9 cm3 (TR) and 51.0±23.1 cm3 (TO, p = 0.23); CTV D90, 111±12% (TR) and 101±17% (TO, p = 0.50); rectum D2cc, 56±12% (TR) and 53±16% (TO, p = 0.71); bladder D2cc, 73±14% (TR) and 90±20% (TO, p = 0.22); sigmoid D2cc, 59±10% (TR) and 59±22% (TO, p = 0.98). Conclusion: TR and TO were both used with good dosimetric results. TO were used for patients with larger CTV volumes than TR, although paired analysis suggest that tissue distortion and contouring bias may partially explain this Result. CTV D90 on average > 80 Gy EQD2 were achieved in both groups despite the different CTV volume. Higher bladder D2cc for TO than TR was observed.« less