skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-661: Quantitative MRI Assessment of a Novel Direction-Modulated Brachytherapy Tandem Applicator for Cervical Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4925024· OSTI ID:22538169
; ; ; ; ; ;  [1];  [1]
  1. Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

Purpose: To quantitatively evaluate the MR image quality of a novel direction modulated brachytherapy (DMBT) tandem applicator for cervical cancer, using the clinical MRI scanning protocol for image guided brachytherapy. Methods: The tungsten alloy-based applicator was placed in a water phantom and clinical imaging protocol was performed. Axial images were acquired using 2D turbo-spin echo (TSE) T2-weighted sequence on a 1.5T GE 450w MR scanner and an 8-channel body coil. As multi-channel receiver coil was used, inhomogeneities in the B1 receive field must be considered before performing the quantification process. Therefore the applicator was removed from the phantom and the whole imaging session was performed again for the water phantom with the same parameters. Images from the two scans were then subtracted, resulting in a difference image that only shows the applicator with its surrounding magnetic susceptibility dipole artifact. Line profiles were drawn and plotted on the difference image at various angles and locations along the tandem. Full width at half maximum (FWHM) was measured at all the line profiles to quantify the extent of the artifact. Additionally, the extent of the artifact along the diameter of the tandem was measured at various angles and locations. Results: After removing the background inhomogeneities of the receiver coil, FWHM of the tandem measured 5.75 ± 0.35 mm (the physical tandem diameter is 5.4 mm). The average extent of the artifacts along the diameter of the tandem measured is 2.14 ± 0.56 mm. In contrast to CT imaging of the same applicator (not shown here), the tandem can be easily identified without additional correction algorithms. Conclusion: This work demonstrated that the novel DMBT tandem applicator has minimal susceptibility artifact in T2-weighted images employed in clinical practice for MRI-guided brachytherapy of cervical cancer.

OSTI ID:
22538169
Journal Information:
Medical Physics, Vol. 42, Issue 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English