skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling

Abstract

Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopic x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts formore » each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine were (0.27,0.24,0.34mm) and kV-imager (0.15,−0.4,0.21mm). Conclusion: A statistical model was developed to evaluate the individual and cumulative systematic and random uncertainties induced by the different hardware and software components of the 6D-ExacTrac-system. The immobilization mask was associated with the largest positioning uncertainty.« less

Authors:
; ; ; ; ;  [1]
  1. University of Oklahoma Health Science Center, Oklahoma City, OK (United States)
Publication Date:
OSTI Identifier:
22538167
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; BEAM POSITION; BIOMEDICAL RADIOGRAPHY; COMPUTER CODES; EVALUATION; HEAD; IMAGES; PATIENTS; POSITIONING; RADIOTHERAPY; SIMULATION; STATISTICAL MODELS; X RADIATION

Citation Formats

Keeling, V, Jin, H, Hossain, S, Algan, O, Ahmad, S, and Ali, I. SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling. United States: N. p., 2015. Web. doi:10.1118/1.4925022.
Keeling, V, Jin, H, Hossain, S, Algan, O, Ahmad, S, & Ali, I. SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling. United States. doi:10.1118/1.4925022.
Keeling, V, Jin, H, Hossain, S, Algan, O, Ahmad, S, and Ali, I. Mon . "SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling". United States. doi:10.1118/1.4925022.
@article{osti_22538167,
title = {SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling},
author = {Keeling, V and Jin, H and Hossain, S and Algan, O and Ahmad, S and Ali, I},
abstractNote = {Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopic x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine were (0.27,0.24,0.34mm) and kV-imager (0.15,−0.4,0.21mm). Conclusion: A statistical model was developed to evaluate the individual and cumulative systematic and random uncertainties induced by the different hardware and software components of the 6D-ExacTrac-system. The immobilization mask was associated with the largest positioning uncertainty.},
doi = {10.1118/1.4925022},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}