skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

Abstract

Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC) simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Timore » screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less

Authors:
; ;  [1]
  1. Rambam Medical Center, Haifa (Israel)
Publication Date:
OSTI Identifier:
22538119
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; CARBON FIBERS; DISTURBANCES; FASTENERS; GOLD; IMPLANTS; MONTE CARLO METHOD; NEOPLASMS; PHANTOMS; POWDERS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; SKELETAL DISEASES; TITANIUM

Citation Formats

Bar-Deroma, R, Borzov, E, and Nevelsky, A. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions. United States: N. p., 2015. Web. doi:10.1118/1.4924972.
Bar-Deroma, R, Borzov, E, & Nevelsky, A. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions. United States. doi:10.1118/1.4924972.
Bar-Deroma, R, Borzov, E, and Nevelsky, A. Mon . "SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions". United States. doi:10.1118/1.4924972.
@article{osti_22538119,
title = {SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions},
author = {Bar-Deroma, R and Borzov, E and Nevelsky, A},
abstractNote = {Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC) simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.},
doi = {10.1118/1.4924972},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator-smeared treatment beams selected to avoid distal OAR sparing is considered to be safe. J. L. was supported by a scholarship of the University of Vienna.« less
  • Purpose: Exploring appropriate offset values in dose optimization with pencil beam (PB) algorithm to minimize dosimetric differences with plans calculated with Monte Carlo (MC) for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). Methods: 20 cases of Non-Small Cell Lung Cancer, treated with gated full motion range SBRT were selected. According to the proximity of the Gross Tumor Volume (GTV) to the chest wall, two groups are defined: peripherally located when GTV merges with the chest wall for at least 50% of the lesion diameter, and centrally located when the GTV is surrounded by lung tissue. Treatment plans were createdmore » on 4D average intensity projection (AIP) CT set with Brainlab iPlanDose 4.1.2 planning system. The D97 of PTV was normalized to 50Gy using the fast PB and compared with MC. The optimized plan was then recomputed over each 4D respiratory phase, and compared with MC using the same plan MU's. Results: The mean difference in the PB and MC D97 of the ITV was 10.5% (±0.8%) of the prescription dose (50Gy). PB algorithm showed 2.3–2.4% less overestimation to the D97 of the ITV, when comparing to MC, in the maximum exhalation phase than in the maximal inhalation phase. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus for central lesions (12.7±0.8%) (p< 0.01). Conclusion: The dosimetric differences between PB and MC can be reasonably predicted depending on the location of lesion in the lung, and may be used as offset value in dose optimization with PB. Since the maximal exhalation phase demonstrates less dose discrepancy between the two algorithms than that in maximal inhalation phase, caution is suggested when the latter is included as a major phase portion in the respiration gated lung SBRT.« less
  • Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)« less
  • Purpose: Actual irradiated prescription dose to patients cannot be verified. Thus, independent dose verification and second treatment planning system are used as the secondary check. AAA dose calculation engine has contributed to lung SBRT. We conducted a multi-institutional study to assess variation of prescription dose for lung SBRT when using AAA in reference to using Acuros XB and Clarkson algorithm. Methods: Six institutes in Japan participated in this study. All SBRT treatments were planed using AAA in Eclipse and Adaptive Convolve (AC) in Pinnacle3. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU,more » Triangle Product, Ishikawa, Japan), which implemented a Clarkson-based dose calculation algorithm using CT image dataset. A retrospective analysis for lung SBRT plans (73 patients) was performed to compute the confidence limit (CL, Average±2SD) in dose between the AAA and the SMU. In one of the institutes, a additional analysis was conducted to evaluate the variations between the AAA and the Acuros XB (AXB). Results: The CL for SMU shows larger systematic and random errors of 8.7±9.9 % for AAA than the errors of 5.7±4.2 % for AC. The variations of AAA correlated with the mean CT values in the voxels of PTV (a correlation coefficient : −0.7) . The comparison of AXB vs. AAA shows smaller systematic and random errors of −0.7±1.7%. The correlation between dose variations for AXB and the mean CT values in PTV was weak (0.4). However, there were several plans with more than 2% deviation of AAPM TG114 (Maximum: −3.3 %). Conclusion: In comparison for AC, prescription dose calculated by AAA may be more variable in lung SBRT patient. Even AXB comparison shows unexpected variation. Care should be taken for the use of AAA in lung SBRT. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
  • Purpose: The purpose of this work was to evaluate limits and capabilities in the transit dosimetry software for use with the TomoTherapy system by irradiating a heterogeneous phantom. Methods: Helical TomoTherapy plan was created using CIRS phantom (model 062M) with nine various tissue equivalent inserts (lung inhale 0.2 g/cm{sup 3}, lung exhale 0.5 g/cm{sup 3}, adipose 0.96 g/cm{sup 3}, breast 0.99 g/cm{sup 3}, water 1.01 g/cm{sup 3}, muscle 1.06 g/cm{sup 3}, liver 1.07 g/cm{sup 3}, trabecular bone 1.16 g/cm{sup 3}, and dense bone 1.53 g/cm{sup 3}). Targets were contoured within every insert. The phantom was scanned with a 50 cmmore » field of view and 3 mm slice width. Images were imported into the TomoTherapy TPS. A plan was generated to deliver 20 Gy to every insert (2 Gy per fraction) with a jaw width of 2.5 cm, a pitch of 0.430 and an actual modulation factor of 2.621. After the radiation delivery the planning CT, the RT structure, the RT plan, and the RT dose (DICOM format) as well as the exit detector sinogram were imported into the Dosimetry Check software (Math Resolutions, LLC). The 3D delivered doses were reconstructed from the exit detector data by correcting for phantom and couch attenuation. The resulting dose distribution were compared with the TPS planned dose using gamma index. Results: Using the clinical gamma criteria, 3% and 3 mm, all tissue equivalent inserts had a passing percentage of 100% except for 0.2 g/cm{sup 3} and 0.5 g/cm{sup 3} density inserts (gamma value of 81.67% and 99.18% respectively). Conclusion: The evaluated transit dosimetry software provides an independent verification of helical TomoTherapy plans giving additional confidence in the treatment delivery, however, an overestimation of the reconstructed dose in low density materials has been revealed. Implementation of Monte Carlo algorithm for exit dose reconstruction should improve dosimetric accuracy in heterogeneous patient tissues. Agreement with Math Resolutions.« less