skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Human machine interface to manually drive rhombic like vehicles in remote handling operations

Abstract

In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

Authors:
;  [1];  [2]
  1. Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
  2. Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
Publication Date:
Research Org.:
Institute of Electrical and Electronics Engineers - IEEE, 3 Park Avenue, 17th Floor, New York, N.Y. 10016-5997 (United States)
OSTI Identifier:
22531486
Report Number(s):
ANIMMA-2015-IO-x11
TRN: US16V0526102427
Resource Type:
Conference
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France; 9 Refs.
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; COMPARATIVE EVALUATIONS; CONTAINERS; CONTROL; DESIGN; ITER TOKAMAK; MAN-MACHINE SYSTEMS; OPERATION; REMOTE HANDLING; VEHICLES; WHEELS

Citation Formats

Lopes, Pedro, Vale, Alberto, and Ventura, Rodrigo. Human machine interface to manually drive rhombic like vehicles in remote handling operations. United States: N. p., 2015. Web. doi:10.1109/ANIMMA.2015.7465513.
Lopes, Pedro, Vale, Alberto, & Ventura, Rodrigo. Human machine interface to manually drive rhombic like vehicles in remote handling operations. United States. doi:10.1109/ANIMMA.2015.7465513.
Lopes, Pedro, Vale, Alberto, and Ventura, Rodrigo. Wed . "Human machine interface to manually drive rhombic like vehicles in remote handling operations". United States. doi:10.1109/ANIMMA.2015.7465513.
@article{osti_22531486,
title = {Human machine interface to manually drive rhombic like vehicles in remote handling operations},
author = {Lopes, Pedro and Vale, Alberto and Ventura, Rodrigo},
abstractNote = {In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)},
doi = {10.1109/ANIMMA.2015.7465513},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jul 01 00:00:00 EDT 2015},
month = {Wed Jul 01 00:00:00 EDT 2015}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, themore » human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous Center of Rotation (ICR): a geometric approach where, at each time instant, the vehicle describes a circumference (either with a finite or infinite radius). The inverse of the kinematic model transforms the three input parameters of the center of mass into the four parameters for the wheels, preserving the omni-directional capabilities. The solution is implemented and tested using a HMI with a control disk and an analog joystick with two axis. The control disk was specially designed for this solution and implemented using a programmable micro-controller. In the first set of experiments, the HMI communicates with a computer running a simulator of the CPRHS/CTS, with the vehicle kinematics and dynamics, moving in a map of the ITER buildings. In the second set of experiments, the HMI communicates with a scaled prototype of the CPRHS running in a mock-up scenario to obtain more realistic results. Several type of tests were performed to evaluate the usability of the HMI. Different human operators without knowledge neither experience with this interface were invited to test the HMI. The operators had to drive the vehicle from an initial place to a final destination under the following conditions: with a pre-computed path to help guidance, without any path, with the information of the closest obstacles and without any help. The performance was evaluated using the time duration of the operation, the energy required to perform the described path, the risk of collision and, in case of a pre-computed path, the comparison between paths. In addition, each operator tested the HMI several times to evaluate the performance along consecutive trials. (authors)« less
  • The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs formore » a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments.« less
  • Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables.
  • The use of teleoperated robotic devices for law enforcement operations has risen dramatically in recent years. The typical device is a portable, teleoperated vehicle with a manipulator. The availability of reliable, affordable equipment and emphasis on personnel safety are some of the primary driving forces. The primary use of these robots is for investigation and handling of explosive devices. The Kentucky State Police (KSP) have been using a remote vehicle since December 1988.
  • For {approximately}30 yr, the French Atomic Energy Authority and the Cogema Company have gained valuable experience in fuel management, reprocessing of spent fuel, and associated problems such as processing and packing of solid and liquid waste. The Cogema experience with fuel unloading and various methods of associated flask handling was provided a high degree of confidence in the operation of future facilities for the return of waste. This experience with two different installations (one being more complicated than the other) facilitates selection of the best way to implement a function; therefore, the waste loading facilities will use the remote handlingmore » and automatic processes but only when necessary. This philosophy will also minimize the cost of the workshops. All the technology used by Cogema for the purposes described above is relevant to the reprocessing of spent fuel and associated activities. Nevertheless, this technology could also be applied to interim spent-fuel storage.« less