skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection Of Special Nuclear Materials Tagged Neutrons

Conference ·
OSTI ID:22531473
; ;  [1]; ; ; ; ; ;  [2];  [3]
  1. CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)
  2. CEA, DRT, LIST, Saclay, F-91191 Gif-sur-Yvette (France)
  3. CEA, DAM, DIF, F-91297 Arpajon (France)

In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction of the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container, within 10 min acquisitions. (authors)

Research Organization:
Institute of Electrical and Electronics Engineers - IEEE, 3 Park Avenue, 17th Floor, New York, N.Y. 10016-5997 (United States)
OSTI ID:
22531473
Report Number(s):
ANIMMA-2015-IO-91; TRN: US16V0394102414
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France; 5 Refs.
Country of Publication:
United States
Language:
English