skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Physik Department, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)
  2. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind–white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe an aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh–Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100–300 km s{sup −1}, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.

OSTI ID:
22525790
Journal Information:
Astrophysical Journal, Vol. 806, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English