skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

Journal Article · · Astrophysical Journal, Supplement Series
 [1]; ; ; ; ;  [2]
  1. School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom)
  2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

OSTI ID:
22520223
Journal Information:
Astrophysical Journal, Supplement Series, Vol. 218, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0067-0049
Country of Publication:
United States
Language:
English