skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

Journal Article · · Astronomical Journal (Online)
 [1]; ;  [2];  [3]
  1. Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)
  2. Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)
  3. Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

OSTI ID:
22520181
Journal Information:
Astronomical Journal (Online), Vol. 150, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English

Similar Records

THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS
Journal Article · Mon Oct 01 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:22520181

Transiting planets with LSST. I. Potential for LSST exoplanet detection
Journal Article · Thu Jan 01 00:00:00 EST 2015 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22520181

TOI-1338: TESS’ First Transiting Circumbinary Planet
Journal Article · Mon Jun 01 00:00:00 EDT 2020 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22520181