skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS

Journal Article · · Astrophysical Journal Letters

One of the puzzles associated with tidal disruption event candidates (TDEs) is that there is a dichotomy between the color temperatures of a few × 10{sup 4} K for TDEs discovered with optical and UV telescopes and the color temperatures of a few × 10{sup 5}–10{sup 6} K for TDEs discovered with X-ray satellites. Here, we propose that high-temperature TDEs are produced when the tidal debris of a disrupted star self-intersects relatively close to the supermassive black hole, in contrast to the more distant self-intersection that leads to lower color temperatures. In particular, we note from simple ballistic considerations that greater apsidal precession in an orbit is the key to closer self-intersection. Thus, larger values of β, the ratio of the tidal radius to the pericenter distance of the initial orbit, are more likely to lead to higher temperatures of more compact disks that are super-Eddington and geometrically and optically thick. For a given star and β, apsidal precession also increases for larger black hole masses, but larger black hole masses imply a lower temperature at the Eddington luminosity. Thus, the expected dependence of the temperature on the mass of the black hole is non-monotonic. We find that in order to produce a soft X-ray temperature TDE, a deep plunging stellar orbit with β > 3 is needed and a black hole mass of ≲5 × 10{sup 6}M{sub ⊙} is favored. Although observations of TDEs are comparatively scarce and are likely dominated by selection effects, it is encouraging that both expectations are consistent with current data.

OSTI ID:
22518747
Journal Information:
Astrophysical Journal Letters, Vol. 812, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English