skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

Abstract

Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While bothmore » sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.« less

Authors:
; ; ; ; ; ;  [1]
  1. Duke University Medical Center, Durham, NC (United States)
Publication Date:
OSTI Identifier:
22499326
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; CORRELATIONS; IMAGES; MAGNETIC SUSCEPTIBILITY; MAMMARY GLANDS; NEOPLASMS; NMR IMAGING; PATIENTS; PLANNING; RADIOTHERAPY; RESPONSE FUNCTIONS; SPIN ECHO

Citation Formats

Adamson, J, Chang, Z, Cai, J, Palta, M, Horton, J, Yin, F, and Blitzblau, R. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study. United States: N. p., 2015. Web. doi:10.1118/1.4924309.
Adamson, J, Chang, Z, Cai, J, Palta, M, Horton, J, Yin, F, & Blitzblau, R. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study. United States. doi:10.1118/1.4924309.
Adamson, J, Chang, Z, Cai, J, Palta, M, Horton, J, Yin, F, and Blitzblau, R. Mon . "SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study". United States. doi:10.1118/1.4924309.
@article{osti_22499326,
title = {SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study},
author = {Adamson, J and Chang, Z and Cai, J and Palta, M and Horton, J and Yin, F and Blitzblau, R},
abstractNote = {Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.},
doi = {10.1118/1.4924309},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patientmore » position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures favorable day-to-day setup accuracy. DIBH setup appears to be more uncertain and this would be the patient group who will definitely benefit from the extra information of 3D surface setup.« less
  • Purpose: To develop a computerized pharmacokinetic model-free Gross Tumor Volume (GTV) segmentation method based on dynamic contrastenhanced MRI (DCE-MRI) data that can improve physician GTV contouring efficiency. Methods: 12 patients with biopsy-proven early stage breast cancer with post-contrast enhanced DCE-MRI images were analyzed in this study. A fuzzy c-means (FCM) clustering-based method was applied to segment 3D GTV from pre-operative DCE-MRI data. A region of interest (ROI) is selected by a clinician/physicist, and the normalized signal evolution curves were calculated by dividing the signal intensity enhancement value at each voxel by the pre-contrast signal intensity value at the corresponding voxel.more » Three semi-quantitative metrics were analyzed based on normalized signal evolution curves: initial Area Under signal evolution Curve (iAUC), Immediate Enhancement Ratio (IER), and Variance of Enhancement Slope (VES). The FCM algorithm wass applied to partition ROI voxels into GTV voxels and non-GTV voxels by using three analyzed metrics. The partition map for the smaller cluster is then generated and binarized with an automatically calculated threshold. To reduce spurious structures resulting from background, a labeling operation was performed to keep the largest three-dimensional connected component as the identified target. Basic morphological operations including hole-filling and spur removal were useutilized to improve the target smoothness. Each segmented GTV was compared to that drawn by experienced radiation oncologists. An agreement index was proposed to quantify the overlap between the GTVs identified using two approaches and a thershold value of 0.4 is regarded as acceptable. Results: The GTVs identified by the proposed method were overlapped with the ones drawn by radiation oncologists in all cases, and in 10 out of 12 cases, the agreement indices were above the threshold of 0.4. Conclusion: The proposed automatic segmentation method was shown to be promising and might be used to improve physician contouring efficiency. J Horton receives grant from NIH and Varian Medical Systems; F-F Yin receives grant from Varian Medical Systems.« less
  • Purpose: IGRT based on the bone matching may produce a larger target positioning error in terms of the reproducibility of the expiration breath hold. Therefore, the feasibility of the 3D image matching between planning CT image and pretreatment CBCT image based on the diaphragm matching was investigated. Methods: In fifteen-nine liver SBRT cases, Lipiodol, uptake after TACE was outlined as the marker of the tumor. The relative coordinate of the isocenter obtained by the contrast matching was defined as the reference coordinate. The target positioning difference between diaphragm matching and bone matching were evaluated by the relative coordinate of themore » isocenter from the reference coordinate obtained by each matching technique. In addition, we evaluated PTV margins by van Herk setup margin formula. Results: The target positioning error by the diaphragm matching and the bone matching was 1.31±0.83 and 3.10±2.80 mm in the cranial-caudal(C-C) direction, 1.04±0.95 and 1.62±1.02 mm in the anterior-posterior(A-P) direction, 0.93±1.19 and 1.12±0.94 mm in the left-right(L-R) direction, respectively. The positioning error by the diaphragm matching was significantly smaller than the bone matching in the C-C direction (p<0.05). The setup margin of diaphragm matching and bone matching that we had calculated based on van Herk margin formula was 4.5mm and 6.2mm(C-C), and 3.6mm and 6.3mm(A-P), and 2.6mm and 4.5mm(L-R), respectively. Conclusion: IGRT based on a diaphragm matching could be one alternative image matching technique for the positioning of the patients with liver tumor.« less
  • Purpose: The present study was designed to investigate the displacement of heart using Deep Inspiration Breath Hold (DIBH) CT data compared to free-breathing (FB) CT data and radiation exposure to heart. Methods: Treatment planning was performed on the computed tomography (CT) datasets of 20 patients who had received lumpectomy treatments. Heart, lung and both breasts were outlined. The prescribed dose was 50 Gy divided into 28 fractions. The dose distributions in all the plans were required to fulfill the International Commission on Radiation Units and Measurement specifications that include 100% coverage of the CTV with ≥ 95% of the prescribedmore » dose and that the volume inside the CTV receiving > 107% of the prescribed dose should be minimized. Displacement of heart was measured by calculating the distance between center of heart and left breast. For the evaluation of radiation dose to heart, minimum, maximum and mean dose to heart were calculated. Results: The maximum and minimum left-right (LR) displacements of heart were 8.9 mm and 3 mm, respectively. The heart moved > 4 mm in the LR direction in 17 of the 20 patients. The distances between the heart and left breast ranged from 8.02–17.68 mm (mean, 12.23 mm) and 7.85–12.98 mm (mean, 8.97 mm) with DIBH CT and FB CT, respectively. The maximum doses to the heart were 3115 cGy and 4652 cGy for the DIBH and FB CT dataset, respectively. Conclusion: The present study has demonstrated that the DIBH technique could help to reduce the risk of radiation dose-induced cardiac toxicity by using movement of cardiac; away from radiation field. The DIBH technique could be used in an actual treatment room for a few minutes and could effectively reduce the cardiac dose when used with a sub-device or image acquisition standard to maintain consistent respiratory motion.« less
  • Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle,more » to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation unit in near future to carry out the gated radiotherapy treatment.« less