skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

Abstract

Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline, where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dosemore » can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.« less

Authors:
;  [1];  [2];  [2];  [1];  [2]
  1. London Regional Cancer Program, London, ON (United Kingdom)
  2. (United Kingdom)
Publication Date:
OSTI Identifier:
22496295
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; DOSIMETRY; GY RANGE 01-10; IMAGES; LIVER; LUNGS; RADIATION DOSES; RADIOTHERAPY; VERIFICATION

Citation Formats

Schaly, B, Gaede, S, Department of Medical Biophysics, Western University, London, ON, Department of Oncology, Western University, London, ON, Xhaferllari, I, and Department of Medical Biophysics, Western University, London, ON. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device. United States: N. p., 2015. Web. doi:10.1118/1.4924944.
Schaly, B, Gaede, S, Department of Medical Biophysics, Western University, London, ON, Department of Oncology, Western University, London, ON, Xhaferllari, I, & Department of Medical Biophysics, Western University, London, ON. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device. United States. doi:10.1118/1.4924944.
Schaly, B, Gaede, S, Department of Medical Biophysics, Western University, London, ON, Department of Oncology, Western University, London, ON, Xhaferllari, I, and Department of Medical Biophysics, Western University, London, ON. Mon . "SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device". United States. doi:10.1118/1.4924944.
@article{osti_22496295,
title = {SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device},
author = {Schaly, B and Gaede, S and Department of Medical Biophysics, Western University, London, ON and Department of Oncology, Western University, London, ON and Xhaferllari, I and Department of Medical Biophysics, Western University, London, ON},
abstractNote = {Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline, where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.},
doi = {10.1118/1.4924944},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in Junemore » 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.« less
  • Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
  • Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less
  • Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs coveringmore » the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less
  • Purpose: To compare the dosimetric difference of volumetric modulated arc therapy(VMAT) for preoperative radiotherapy rectal cancer using 6MV X-ray flattening filter free(FFF) and flattening filter(FF) modes. Methods: FF-VMAT and FFF-VMAT plans were designed to 15 rectal cancer patients with preoperative radiotherapy by planning treatment system(Eclipse 10.0),respectively. Dose prescription was 50 Gy in 25 fractions. All plans were normalized to 50 Gy to 95% of PTV. The Dose Volume Histogram (DVH), target and risk organ doses, conformity indexes (CI), homogeneity indexes (HI), low dose volume of normal tissue(BP), monitor units(MU) and treatment time (TT) were compared between the two kinds ofmore » plans. Results: FF-VMAT provided the lower Dmean, V105, HI, and higher CI as compared with FFF-VMAT. The small intestine of D5, Bladder of D5, Dmean, V40, V50, L-femoral head of V40, R-femoral head of Dmean were lower in FF-VMAT than in FFF-VMAT. FF-VMAT had higher BP of V5, but no significantly different of V10, V15, V20, V30 as compared with FFF-VMAT. FF-VMAT reduceed the monitor units(MU) by 21%(P<0.05), as well as the treatment time(TT) was no significantly different(P>0.05), as compared with FFF-VMAT. Conclusion: The plan qualities of FF and FFF VMAT plans were comparable and both clinically acceptable. FF-VMAT as compared with FFF-VMAT, showing better target coverage, some of OARs sparing, the MUs of FFF-VMAT were higher than FF-VMAT, yet were delivered within the same time. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)« less