skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom

Abstract

Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum head cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned withmore » EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)« less

Authors:
; ; ; ; ; ; ; ; ; ;  [1]
  1. All India Institute of Medical Sciences, New Delhi (India)
Publication Date:
OSTI Identifier:
22496278
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; BIOMEDICAL RADIOGRAPHY; DESIGN; FILMS; FRACTIONATION; IMAGES; PATIENTS; PHANTOMS; POSITIONING; RADIATION DOSES; RADIOTHERAPY; SURGERY; VERIFICATION; X RADIATION

Citation Formats

Bisht, R, Kale, S, Gopishankar, N, Rath, G, Julka, P, Agarwal, D, Singh, M, Garg, A, Kumar, P, Thulkar, S, and Sharma, B. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom. United States: N. p., 2015. Web. doi:10.1118/1.4924925.
Bisht, R, Kale, S, Gopishankar, N, Rath, G, Julka, P, Agarwal, D, Singh, M, Garg, A, Kumar, P, Thulkar, S, & Sharma, B. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom. United States. doi:10.1118/1.4924925.
Bisht, R, Kale, S, Gopishankar, N, Rath, G, Julka, P, Agarwal, D, Singh, M, Garg, A, Kumar, P, Thulkar, S, and Sharma, B. Mon . "SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom". United States. doi:10.1118/1.4924925.
@article{osti_22496278,
title = {SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom},
author = {Bisht, R and Kale, S and Gopishankar, N and Rath, G and Julka, P and Agarwal, D and Singh, M and Garg, A and Kumar, P and Thulkar, S and Sharma, B},
abstractNote = {Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum head cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)},
doi = {10.1118/1.4924925},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: Picket-fence test is a qualitative TG142-recommended quality assurance (QA) test for multileaf collimators. In study, we adopted the same concept and developed a fast but quantatitive QA test for an automatic patient positioning system that requires submilleter accuracy for a radiosurgical treatment. Methods: A piece of radiochromic film was first placed inside a spherical solid water phantom and then irradiated with a sequenence of linearly placed shots of same collimator size (e.g. 4-mm) via the Leskell Gamma Knife Perfexion system (PFX). The shots were positioned with either equal or non-equal gaps of approximately 4 mm to 8 mm dependingmore » on the location of the region of interest. A pattern recognization program was developed and then applied to measure the gap spacing between two adjacent shots. The measured distance was then compared with the initial preset values for the test. Results: By introducing variable systematic and random shifts of 0.1 mm to 0.5 mm to the shot sequence, the maximum gap variation from the described test was found to be 0.35 mm or less. On average the positioning uncertainty for the PFX delivery system was found to be 0.1±0.2 mm. No significant difference in the positioning uncertainty was noted for the centrally aligned shot sequence locations versus the peripherally aligned shot sequence locations. Conclusion: A new quantitative picket-fence type test was developed and demonstrated for routine QA of the submillimeter PFX patient positioning sytem. This test also enables independent verification of any patient-specific shot positioning for a critical treatment such as a tumor in brainstem. Dr Ma is currently on the board of international society of stereotactic Radiosurgery.« less
  • Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions weremore » created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC.« less
  • Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
  • Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less
  • Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered. The purpose of the study is to compare three different dosimeters for pre-treatment QA. Methods: Nineteen patients (affected by neurinomas, brain metastases, and by meningiomas) were treated with VMAT plans computed on a Monte Carlo based TPS. Gafchromic films inside a slab phantom (GF), 3-D cylindrical phantom with two orthogonal diodes array (DA), and 3-D cylindricalmore » phantom with a single rotating ionization chambers array (ICA), have been evaluated. The dosimeters are, respectively, characterized by a spatial resolution of: 0.4 (in our method), 5 and 2.5 mm. For GF we used a double channel method for calibration and reading protocol; for DA and ICA we used the 3-D dose distributions reconstructed by the two software sold with the dosimeters. With the need of a common system for analyze different measuring approaches, we used an in-house software that analyze a single coronal plane in the middle of the phantoms and Gamma values (2% / 2 mm and 3% / 3 mm) were computed for all patients and dosimeters. Results: The percentage of points with gamma values less than one was: 95.7% for GF, 96.8% for DA and 95% for ICA, using 3%/3mm criteria, and 90.1% for GF, 92.4% for DA and 92% for ICA, using 2% / 2mm gamma criteria. Tstudent test p-values obtained by comparing the three datasets were not statistically significant for both gamma criteria. Conclusion: Gamma index analysis is not affected by different spatial resolution of the three dosimeters.« less