skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron

Abstract

Purpose: CTI cyclotron RDS-111 was used at the Hong Kong Sanatorium and Hospital (HKSH) to produce radiopharmaceuticals and radioactive tracers for diagnostic scans between 1999 and 2007. During the operation, some machine components became radioactive by activation. For the safety of staff, decommissioning took place in 2009, two years after the cyclotron had stopped operation. This study investigates the residual radioactivity and radionuclides found in different cyclotron components in 2014 in compliance with the local regulations in Hong Kong for transfer of radioactive waste. Methods: A representative sample of each part was counted using a high-purity germanium detector (manufacturer: ORTECT) for at least four hours. GammaVision, a multichannel analyzer software, was used to identify the radionuclides found in the cyclotron components, as well as the associated activities. A standard library and a Mariscotti peak search algorithm were used to identify the present radionuclides. Only radionuclides with half-life greater than 180 days were considered. Results: Among the components, the Havar target foil has the highest specific activity ((4.6±0.6)×10{sup 2} Bq/g), with Co-60 being the most prominent ((3.8±0.5)×10{sup 2} Bq/g). The total activity of the target foil, however, is still low due to its small mass of 0.04 g. Radioisotopes Mn-54 (46±6more » Bq/g), Na-22 (6.8±0.8 Bq/g), Co-57 (7.3±0.9 Bq/g), and Fe-59 (6.0±0.9 Bq/g) have also been detected in the target foil. The target window holder and the vacuum window register a specific activity of 88.3±0.6 Bq/g and 48.6±0.1 Bq/g, respectively. Other components, such as the collimator, the target tube, the valve body and the beamline, are also found with trace amounts of radionuclides. Conclusion: Even seven years after the cyclotron had stopped operation, some components still exhibited residual radioactivity from activation exceeding the IAEA clearance levels. Special consideration for radiological protection may need to be taken in the disposal of the cyclotron parts.« less

Authors:
; ; ; ; ; ;  [1]
  1. Hong Kong Sanatorium and Hospital, Happy Valley (Hong Kong)
Publication Date:
OSTI Identifier:
22496252
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 07 ISOTOPES AND RADIATION SOURCES; 43 PARTICLE ACCELERATORS; COBALT 57; COBALT 60; COMPUTER CODES; CYCLOTRONS; DECOMMISSIONING; FOILS; HONG KONG; ISOTOPE PRODUCTION; MANGANESE 54; MAXIMUM PERMISSIBLE ACTIVITY; OCCUPATIONAL EXPOSURE; OCCUPATIONAL SAFETY; RADIATION MONITORING; RADIATION PROTECTION; RADIOACTIVITY; RADIONUCLIDE KINETICS; SODIUM 22; TRACER TECHNIQUES

Citation Formats

Choi, HHF, Leung, TM, Chiu, TL, Yang, B, Wu, PM, Cheung, KY, and Yu, SK. SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron. United States: N. p., 2015. Web. doi:10.1118/1.4924896.
Choi, HHF, Leung, TM, Chiu, TL, Yang, B, Wu, PM, Cheung, KY, & Yu, SK. SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron. United States. doi:10.1118/1.4924896.
Choi, HHF, Leung, TM, Chiu, TL, Yang, B, Wu, PM, Cheung, KY, and Yu, SK. Mon . "SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron". United States. doi:10.1118/1.4924896.
@article{osti_22496252,
title = {SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron},
author = {Choi, HHF and Leung, TM and Chiu, TL and Yang, B and Wu, PM and Cheung, KY and Yu, SK},
abstractNote = {Purpose: CTI cyclotron RDS-111 was used at the Hong Kong Sanatorium and Hospital (HKSH) to produce radiopharmaceuticals and radioactive tracers for diagnostic scans between 1999 and 2007. During the operation, some machine components became radioactive by activation. For the safety of staff, decommissioning took place in 2009, two years after the cyclotron had stopped operation. This study investigates the residual radioactivity and radionuclides found in different cyclotron components in 2014 in compliance with the local regulations in Hong Kong for transfer of radioactive waste. Methods: A representative sample of each part was counted using a high-purity germanium detector (manufacturer: ORTECT) for at least four hours. GammaVision, a multichannel analyzer software, was used to identify the radionuclides found in the cyclotron components, as well as the associated activities. A standard library and a Mariscotti peak search algorithm were used to identify the present radionuclides. Only radionuclides with half-life greater than 180 days were considered. Results: Among the components, the Havar target foil has the highest specific activity ((4.6±0.6)×10{sup 2} Bq/g), with Co-60 being the most prominent ((3.8±0.5)×10{sup 2} Bq/g). The total activity of the target foil, however, is still low due to its small mass of 0.04 g. Radioisotopes Mn-54 (46±6 Bq/g), Na-22 (6.8±0.8 Bq/g), Co-57 (7.3±0.9 Bq/g), and Fe-59 (6.0±0.9 Bq/g) have also been detected in the target foil. The target window holder and the vacuum window register a specific activity of 88.3±0.6 Bq/g and 48.6±0.1 Bq/g, respectively. Other components, such as the collimator, the target tube, the valve body and the beamline, are also found with trace amounts of radionuclides. Conclusion: Even seven years after the cyclotron had stopped operation, some components still exhibited residual radioactivity from activation exceeding the IAEA clearance levels. Special consideration for radiological protection may need to be taken in the disposal of the cyclotron parts.},
doi = {10.1118/1.4924896},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plansmore » were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.« less
  • Purpose: Parts of the cyclotron and energy degrader are incidentally activated by protons lost during the acceleration and transport of protons for radiation therapy. An understanding of the radioactive material inventory is needed when regulatory requirements are assessed. Methods: First, the tumor dose and volume is used to determine the required energy deposition. For spot scanning, the tumor length along the beam path determines the number of required energy layers. For each energy layer the energy deposition per proton can be calculated from the residual proton range within the tumor. Assuming a typical layer weighting, an effective energy deposition permore » proton can then be calculated. The total number of required protons and the number of protons per energy layer can then be calculated. For each energy layer, proton losses in the energy degrader are calculated separately since its transmission efficiency, and hence the amount of protons lost, is energy dependent. The degrader efficiency also determines the number of protons requested from the cyclotron. The cyclotron extraction efficiency allows a calculation of the proton losses within the cyclotron. The saturation activity induced in the cyclotron and the degrader is equal to the production rate R for isotopes whose half-life is shorter that the projected cyclotron life time. R can be calculated from the proton loss rate and published production cross sections. Results: About 1/3 of the saturation activity is produced in the cyclotron and 2/3 in the energy degrader. For a projected case mix and a patient load of 1100 fractions per week at 1.8 Gy per fraction a combined activity of 180 mCi was estimated at saturation. Conclusion: Calculations were used to support to application of a radioactive materials license for the possession of 200 mCi of activity for isotopes with atomic numbers ranging from 1-83.« less
  • Purpose: The purpose of this study was to evaluate the dosimetric impact of beam energy to the IORT treatment of residual cancer cells with different cancer cell distributions after breast-conserving surgery. Methods: The three dimensional (3D) radiation doses of IORT using a 4-cm spherical applicator at the energy of 40 keV and 50 keV were separately calculated at different depths of the postsurgical tumor bed. The modified linear quadratic model (MLQ) was used to estimate the radiobiological response of the tumor cells assuming different radio-sensitivities and density distributions. The impact of radiation was evaluated for two types of breast cancermore » cell lines (α /β=10, and α /β =3.8) at 20 Gy dose prescribed at the applicator surface. Cancer cell distributions in the postsurgical tissue field were assumed to be a Gaussian with the standard deviations of 0.5, 1 and 2 mm respectively, namely the cancer cell infiltrations of 1.5, 3, and 6 mm respectively. The surface cancer cell percentage was assumed to be 0.01%, 0.1%, 1% and 10% separately. The equivalent uniform doses (EUD) for all the scenarios were calculated. Results: The EUDs were found to be dependent on the distributions of cancer cells, but independent of the cancer cell radio-sensitivities and the density at the surface. EUDs of 50 keV are 1% larger than that of 40 keV. For a prescription dose of 20 Gy, EUDs of 50 keV beam are 17.52, 16.21 and 13.14 Gy respectively for 0.5, 1.0 and 2.0 mm of the standard deviation of cancer cell Gaussian distributions. Conclusion: The impact by selected energies of IORT beams is very minimal. When energy is changed from 50 keV to 40 keV, the EUDs are almost the same for the same cancer cell distribution. 40 keV can be safely used as an alternative of 50 keV beam in IORT.« less
  • Purpose: Measurement of positron emission following proton beam irradiation of a target has been studied as a method of in-vivo dosimetry. Relative dosimetry studies between a phantom and treatment plan are susceptible to range uncertainties from material heterogeneities and setup error. By using the radiochromic polyurethane dosimeter PRESAGE, we can correlate the proton dose distribution to the PET activity measurement within a single detector. The PRESAGE formulation used was developed for high-LET proton radiotherapy, has similar density and RLSP to tissue, and consists of a greater carbon component, which gives it a higher positron signal than many other 3D detectors.more » Methods: Three cylindrical PRESAGE dosimeters were irradiated semi-uniformly to 500 cGy with 180- MeV protons. The beam was directed along the dosimeter axis and delivered a 2-cm SOBP at the center of the dosimeter. The dosimeters were rushed to a nearby PET/CT where imaging began within 15 minutes, less than a single half-life of 11C. A 3-hr measurement captured the full activation decay. Afterwards, the dose profiles were measured by optical-CT. A direct comparison between the measured dose and the positron emission was performed using CERR software. Results: The correlations between dose distributions and PET activity were consistent with previous studies in that the proximal region of the SOBP displayed the highest activity. The spatial distributions between the dose and activity were similar. Along the central axis of the beam, we found a shift in the distal 80% of 1 cm. The lateral profile showed good agreement between dose and activity. PET imaging times between 30-min and 3-hrs showed <5% discrepancy. Conclusion: PRESAGE dosimeters offer a strong and unique potential to accurately correlate dosimetric and PET activation information. Implementation in an anthropomorphic phantom could be used to study representative treatment plans. NIH grant 5R01CA100835.« less
  • Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less