skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

Abstract

Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.

Authors:
; ; ; ; ;  [1]
  1. Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211 (China)
Publication Date:
OSTI Identifier:
22494646
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CERAMICS; CONVERSION; ENERGY LEVELS; EXCITATION; PHOTOLUMINESCENCE; PRASEODYMIUM IONS; SPECTRA; TEMPERATURE DEPENDENCE; YTTERBIUM IONS

Citation Formats

Huang, Yinpeng, Luo, Laihui, E-mail: luolaihui@nbu.edu.cn, Wang, Jia, Zuo, Qianghui, Yao, Yongjie, and Li, Weiping. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics. United States: N. p., 2015. Web. doi:10.1063/1.4927278.
Huang, Yinpeng, Luo, Laihui, E-mail: luolaihui@nbu.edu.cn, Wang, Jia, Zuo, Qianghui, Yao, Yongjie, & Li, Weiping. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics. United States. doi:10.1063/1.4927278.
Huang, Yinpeng, Luo, Laihui, E-mail: luolaihui@nbu.edu.cn, Wang, Jia, Zuo, Qianghui, Yao, Yongjie, and Li, Weiping. Tue . "The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics". United States. doi:10.1063/1.4927278.
@article{osti_22494646,
title = {The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics},
author = {Huang, Yinpeng and Luo, Laihui, E-mail: luolaihui@nbu.edu.cn and Wang, Jia and Zuo, Qianghui and Yao, Yongjie and Li, Weiping},
abstractNote = {Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.},
doi = {10.1063/1.4927278},
journal = {Journal of Applied Physics},
number = 4,
volume = 118,
place = {United States},
year = {Tue Jul 28 00:00:00 EDT 2015},
month = {Tue Jul 28 00:00:00 EDT 2015}
}
  • Ferroelectric Na{sub 0.5}(Bi{sub 1-x}Pr{sub x}){sub 0.5}TiO{sub 3} (x=0.00, 0.10) ceramics have been synthesized through sol-gel method. The phase formation has been confirmed by X-ray diffraction analysis of ceramics annealed at 800°C. The relaxation mechanism is observed from variation of dielectric constant with respect to temperature and frequency. Substitution of Pr reduces vacancies and defects identified from leakage current measurements. Further, the polarization Vs electric field (P-E) measurements have been performed at room temperature.
  • Lead free pervoskite 0.80 Na{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.16 K{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.04 BaTiO{sub 3} (NKBBT) ceramics were fabricated via conventional solid state processing technique sintered at 1200 °C and their crystal structures and electrical properties were systematically studied. Structure of the prepared NKBBT ceramics was confirmed by Powder X-ray diffraction analysis. The dependence of dielectric constant on temperature for various frequencies (100 Hz-100 KHz) has been determined. The diffuse transition is observed in the variation of dielectric constant and it provides evidence for the relaxor characteristics. The ferroelectric response of the NKBBT ceramics with different frequencymore » was studied. Polarisation electric field hysteresis loops revealed that the remnant polarization is 6.88 µC/cm{sup 2} and coercive electric field is 66.42 kV/cm.« less
  • We report the piezoelectric and ferroelectric properties of (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}){sub x}-(BaTiO{sub 3}){sub y}-(Na{sub 0.5}K{sub 0.5}NbO{sub 3}){sub 1-x-y} ceramics for Na{sub 0.5}K{sub 0.5}NbO{sub 3} rich end of composition (x, y {<=} 0.04 mol. %). These compositions were found to exhibit significantly improved thermal stability of piezoresponse. Variation of dielectric constant as a function of temperature revealed that orthorhombic-tetragonal (T{sub o-t}) and tetragonal-cubic (T{sub c}) transition temperatures for these compositions were in the vicinity of 0 Degree-Sign C and 330 Degree-Sign C, respectively. Dynamic scaling and temperature dependent X-ray diffraction analysis were conducted. Results are discussed in terms of intrinsicmore » and extrinsic contributions to the piezoelectric response explaining the temperature dependent behavior.« less
  • Phase diagram of Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-BaTiO{sub 3}-K{sub 0.5}Na{sub 0.5}NbO{sub 3} ternary system has been analyzed and (0.94-x)BNT-0.06BT-xKNN (0.15{<=}x{<=}0.30) ceramics have been prepared and investigated. Pseudocubic structures were confirmed by x-ray diffractions and its preliminary Rietveld refinements. P-E, S-E, and S-P{sup 2} profiles (where P, E, and S denote polarization, electric field, and strain, respectively) indicate electrostrictive behavior of all ceramics. The compositions with x=0.20 and 0.25 show pure electrostrictive characteristics. The dissipation energy, electrostrictive strain, and electrostrictive coefficient have been determined and compared with other lead-free and lead-containing electrostrictors. The electrostrictive coefficient can reach as high as 0.026 m{supmore » 4}/C{sup 2}, about 1.5 times of the value of traditional Pb-based electrostrictors.« less
  • Lead-free piezoelectric ceramics with the composition of (1-x)Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-x(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} or (1-x) BNKT-xBNdT (with x = 0-0.20 mol fraction) have been synthesized by a conventional mixed-oxide method. The compositional dependence of phase structure and electrical properties of the ceramics were systemically studied. The optimum sintering temperature of all BNKT-BNdT ceramics was found to be 1125 Degree-Sign C. X-ray diffraction pattern suggested that BNdT effectively diffused into BNKT lattice during sintering to form a solid solution with a perovskite structure. Scanning electron micrographs showed a slight reduction of grain size when BNdT was added. Itmore » was found that BNKT-0.10BNdT ceramic exhibited optimum electrical properties ({epsilon}{sub r} = 1716, tan{delta} = 0.0701, T{sub c} = 327 Degree-Sign C, and d{sub 33} = 211 pC/N), suggesting that this composition has a potential to be one of a promising lead-free piezoelectric candidate for dielectric and piezoelectric applications.« less