skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-74: Dosimetric Advantages of Adaptive Radiotherapy for Head and Neck Cancer Are Confirmed with Weekly CBCT Images

Abstract

Purpose: Our previous study showed that weekly dose monitoring using cone-beam CT (CBCT) images can guide the timing and need for adaptive re-planning during the treatment of head and neck (HN) cancer. Here we aim to confirm the dosimetric improvement of adaptive radiotherapy (ART) using weekly CBCTs. Methods: We randomly selected seven HN patients treated with ART due to noticeable anatomic changes. Twenty weekly images acquired during the second treatment course were included. These CBCTs were aligned with both the initial and re-planning simulation CTs according to the clinical shifts. Daily doses were re-calculated for both the initial and adaptive plans. Contours of the tumor and organs-at-risk (OARs) were manually delineated by a physician on the re-planning CT and then were transferred to the CBCTs for plan evaluation. Contour modifications were made based on the daily anatomic changes observed on CBCTs. All patients were treated with 70Gy to the primary tumor and 56Gy to the elective lymph nodes. Results: Volumetric changes of the tumor (range — 43.9%∼+15.9%) were observed. The average D99 to the primary tumor was (70.1±2.0)Gy (range 62.2∼72.5Gy) for the adaptive plan and (66.0±5.5)Gy (range 50.9∼70.7Gy) for the initial plan(p<<0.01). The average D99 to the elective neck wasmore » (56.3±1.3)Gy (range 52.8∼59.2Gy) for the adaptive plan and (52.4±7.0)Gy (range 37.7∼58.6Gy) for the initial plan(p=0.01). The parotid decreased in volume during the treatment course (range 7.3%∼42.2%). The average D-mean to the spared parotid decreased by 15.3% (p=0.002) for the adaptive plan when compared to the original. With ART, 4 out of 7 patients experienced better sparing of the spinal cord (D-max reduced by 2.5%∼10.2%) and the oral cavity (D-mean reduced by 3.5%∼20.1%). Conclusion: Weekly CBCT dosimetry confirms that ART is an effective method to accommodate on-treatment anatomic changes. In select patients, tumor coverage and OAR sparing may be improved with ART. Research is funded by Siemens.« less

Authors:
; ; ; ; ; ;  [1]
  1. The Cleveland Clinic Foundation, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22494094
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; COMPUTERIZED TOMOGRAPHY; GY RANGE; HEAD; IMAGES; LYMPH NODES; NECK; NEOPLASMS; ORAL CAVITY; ORGANS; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SPINAL CORD

Citation Formats

Shang, Q, Li, Z, Qu, H, Ward, M, Greskovich, J, Koyfman, S, and Xia, P. SU-E-J-74: Dosimetric Advantages of Adaptive Radiotherapy for Head and Neck Cancer Are Confirmed with Weekly CBCT Images. United States: N. p., 2015. Web. doi:10.1118/1.4924161.
Shang, Q, Li, Z, Qu, H, Ward, M, Greskovich, J, Koyfman, S, & Xia, P. SU-E-J-74: Dosimetric Advantages of Adaptive Radiotherapy for Head and Neck Cancer Are Confirmed with Weekly CBCT Images. United States. doi:10.1118/1.4924161.
Shang, Q, Li, Z, Qu, H, Ward, M, Greskovich, J, Koyfman, S, and Xia, P. Mon . "SU-E-J-74: Dosimetric Advantages of Adaptive Radiotherapy for Head and Neck Cancer Are Confirmed with Weekly CBCT Images". United States. doi:10.1118/1.4924161.
@article{osti_22494094,
title = {SU-E-J-74: Dosimetric Advantages of Adaptive Radiotherapy for Head and Neck Cancer Are Confirmed with Weekly CBCT Images},
author = {Shang, Q and Li, Z and Qu, H and Ward, M and Greskovich, J and Koyfman, S and Xia, P},
abstractNote = {Purpose: Our previous study showed that weekly dose monitoring using cone-beam CT (CBCT) images can guide the timing and need for adaptive re-planning during the treatment of head and neck (HN) cancer. Here we aim to confirm the dosimetric improvement of adaptive radiotherapy (ART) using weekly CBCTs. Methods: We randomly selected seven HN patients treated with ART due to noticeable anatomic changes. Twenty weekly images acquired during the second treatment course were included. These CBCTs were aligned with both the initial and re-planning simulation CTs according to the clinical shifts. Daily doses were re-calculated for both the initial and adaptive plans. Contours of the tumor and organs-at-risk (OARs) were manually delineated by a physician on the re-planning CT and then were transferred to the CBCTs for plan evaluation. Contour modifications were made based on the daily anatomic changes observed on CBCTs. All patients were treated with 70Gy to the primary tumor and 56Gy to the elective lymph nodes. Results: Volumetric changes of the tumor (range — 43.9%∼+15.9%) were observed. The average D99 to the primary tumor was (70.1±2.0)Gy (range 62.2∼72.5Gy) for the adaptive plan and (66.0±5.5)Gy (range 50.9∼70.7Gy) for the initial plan(p<<0.01). The average D99 to the elective neck was (56.3±1.3)Gy (range 52.8∼59.2Gy) for the adaptive plan and (52.4±7.0)Gy (range 37.7∼58.6Gy) for the initial plan(p=0.01). The parotid decreased in volume during the treatment course (range 7.3%∼42.2%). The average D-mean to the spared parotid decreased by 15.3% (p=0.002) for the adaptive plan when compared to the original. With ART, 4 out of 7 patients experienced better sparing of the spinal cord (D-max reduced by 2.5%∼10.2%) and the oral cavity (D-mean reduced by 3.5%∼20.1%). Conclusion: Weekly CBCT dosimetry confirms that ART is an effective method to accommodate on-treatment anatomic changes. In select patients, tumor coverage and OAR sparing may be improved with ART. Research is funded by Siemens.},
doi = {10.1118/1.4924161},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: One primary limitation of using CBCT images for H'N adaptive radiotherapy (ART) is the limited field of view (FOV) range. We propose a method to extrapolate the CBCT by using a deformed planning CT for the dose of the day calculations. The aim was to estimate the geometric uncertainty of our extrapolation method. Methods: Ten H'N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken, were selected. Furthermore, a small FOV CBCT (CT2short) was synthetically created by cropping CT2 to the size of a CBCT image. Then, an extrapolated CBCT (CBCTextrp) was generated by deformablymore » registering CT1 to CT2short and resampling with a wider FOV (42mm more from the CT2short borders), where CT1 is deformed through translation, rigid, affine, and b-spline transformations in order. The geometric error is measured as the distance map ||DVF|| produced by a deformable registration between CBCTextrp and CT2. Mean errors were calculated as a function of the distance away from the CBCT borders. The quality of all the registrations was visually verified. Results: Results were collected based on the average numbers from 10 patients. The extrapolation error increased linearly as a function of the distance (at a rate of 0.7mm per 1 cm) away from the CBCT borders in the S/I direction. The errors (μ±σ) at the superior and inferior boarders were 0.8 ± 0.5mm and 3.0 ± 1.5mm respectively, and increased to 2.7 ± 2.2mm and 5.9 ± 1.9mm at 4.2cm away. The mean error within CBCT borders was 1.16 ± 0.54mm . The overall errors within 4.2cm error expansion were 2.0 ± 1.2mm (sup) and 4.5 ± 1.6mm (inf). Conclusion: The overall error in inf direction is larger due to more large unpredictable deformations in the chest. The error introduced by extrapolation is plan dependent. The mean error in the expanded region can be large, and must be considered during implementation. This work is supported in part by Varian Medical Systems, Palo Alto, CA.« less
  • Purpose: For patients with head and neck (HN) cancer, mid-course adaptive radiation therapy (ART) is a common practice in our institution to accommodate anatomic changes. The aim of the study is to evaluate whether dose re-calculation on weekly verification images can provide quantitative assessment for timely adaptive re-planning with daily image-guided intensity modulated radiotherapy (IMRT). Methods: We retrospectively selected sixty daily verification images acquired on CT-on-rail/CBCT from ten HN patients. These image sets were typically a week apart. Among these patients, six patients received a mid-course ART. Contours of the tumors and organ-at-risks (OARs) were manually delineated by a physicianmore » on each verification CT. After placing the treatment iso-center on the verification CTs according to the recorded clinical shifts, daily dose was re-calculated with the same beam configuration as the original plan. For the purpose of this study, electron densities for both verification CTs and planning CTs were set to 1.0 g/cm3. Results: Two patients had D99 of the CTV < 97% of the planned dose for more than three fractions due to remarkable tumor volume shrinkages. D-max of the spinal cord exceeded a tolerance of 45 Gy for four fractions in additional two patients. D-mean of the parotid increased within 25% of the planned value. D-max of the brainstem and D-mean of the oral cavity did not show significant variation. If the re-planning criteria included D99 of the CTV < 97% of the planned dose and D-max of the spinal cord > 45 Gy, two out ten patients required ART at week 2 and two patients required ART at week 3, respectively. Conclusion: Weekly dose monitoring with re-calculation on verification images can provide quantitative dose guidance for timely adaptive re-planning. Future work will include accumulative dose analysis for the decision of adaptive re-planning. The study is supported in part by Siemens Medical Solutions.« less
  • Purpose: This study was to evaluate the significance of weekly imageguided patient setup and to assess the volumetric and dosimetric changes in no-small-cell-lung cancer (NSCLC) patients treated with adaptive conformal radiotherapy (CRT). Methods: 9 NSCLC patients treated with 3D CRT underwent 4D CT-on-rail every five fractions. ITV was generated from three phases of the 4DCT (the end of exhalation, 25% before and after the end of exhalation). The margin of ITV to PTV is 5mm. 6 weekly CTs were acquired for each patient. The weekly CTs were fused with the planning CT by vertebrae. The couch shift was recorded formore » each weekly CT to evaluate the setup error. The gross tumor volumes (GTVs) were contoured on weekly CT images by a physician. Beams from the original plans were applied to weekly CTs to calculate the delivered doses. All patients underwent replanning after 20 fractions. Results: Among the total 54 CTs, the average setup error was 2.0± 1.7, 2.6± 2.1, 2.7± 2.2 mm in X, Y, and Z direction, respectively. The average volume of the primary GTV was reduced from 42.45 cc to 22.78 cc (47.04%) after 6 weeks. The maximal volume regression occurred between 15 and 20 fractions. Adaptive radiation therapy (ART) reduced the V20 and V5 of the lung by 33.5% and 16.89%, respectively. ART also reduced Dmean and D1/3 of the heart by 31.7% and 32.32%, respectively. Dmax of the spinal cord did not vary much during the treatment course. Conclusion: 5 mm margin is sufficient for 4D weekly CTguided radiotherapy in lung cancer. Tumor regression was observed in the majority of patients. ART significantly reduced the OARs dose. Our preliminary results indicated that an off-line ART approach is appropriate in clinical practice.« less
  • Purpose: Radiation doses delivered to patients with head and neck cancer (HN) may deviate from the planned doses because of variations in patient setup and anatomy. This study was to evaluate whether off-line Adaptive Radiotherapy (ART) is sufficient. Methods: Ten HN patients, who received IMRT under daily imaging guidance using CT-on-rail/KV-CBCT, were randomly selected for this study. For each patient, the daily treatment setup was corrected with translational only directions. Sixty weekly verification CTs were retrospectively analyzed. On these weekly verification CTs, the tumor volumes and OAR contours were manually delineated by a physician. With the treatment iso-center placed onmore » the verification CTs, according to the recorded clinical shifts, the treatment beams from the original IMRT plans were then applied to these CTs to calculate the delivered doses. The electron density of the planning CTs and weekly CTs were overridden to 1 g/cm3. Results: Among 60 fractions, D99 of the CTVs in 4 fractions decreased more than 5% of the planned doses. The maximum dose of the spinal cord exceeded 10% of the planned values in 2 fractions. A close examination indicated that the dose discrepancy in these 6 fractions was due to patient rotations, especially shoulder rotations. After registering these 6 CTs with the planning CT allowing six degree of freedoms, the maximum rotations around 3 axes were > 1.5° for these fractions. With rotation setup errors removed, 4 out of 10 patients still required off-line ART to accommodate anatomical changes. Conclusion: A significant shoulder rotations were observed in 10% fractions, requiring patient re-setup. Off-line ART alone is not sufficient to correct for random variations of patient position, although ART is effective to adapt to patients' gradual anatomic changes. Re-setup or on-line ART may be considered for patients with large deviations detected early by daily IGRT images. The study is supported in part by Siemens Medical Solutions.« less
  • Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose formore » H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.« less