skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation

Abstract

Purpose To investigate the feasibility of utilizing carbon fiducials to increase localization accuracy of lumpectomy cavity for partial breast irradiation (PBI). Methods Carbon fiducials were placed intraoperatively in the lumpectomy cavity following resection of breast cancer in 11 patients. The patients were scheduled to receive whole breast irradiation (WBI) with a boost or 3D-conformal PBI. WBI patients were initially setup to skin tattoos using lasers, followed by orthogonal kV on-board-imaging (OBI) matching to bone per clinical practice. Cone beam CT (CBCT) was acquired weekly for offline review. For the boost component of WBI and PBI, patients were setup with lasers, followed by OBI matching to fiducials, with final alignment by CBCT matching to fiducials. Using carbon fiducials as a surrogate for the lumpectomy cavity and CBCT matching to fiducials as the gold standard, setup uncertainties to lasers, OBI bone, OBI fiducials, and CBCT breast were compared. Results Minimal imaging artifacts were introduced by fiducials on the planning CT and CBCT. The fiducials were sufficiently visible on OBI for online localization. The mean magnitude and standard deviation of setup errors were 8.4mm ± 5.3 mm (n=84), 7.3mm ± 3.7mm (n=87), 2.2mm ± 1.6mm (n=40) and 4.8mm ± 2.6mm (n=87), for lasers,more » OBI bone, OBI fiducials and CBCT breast tissue, respectively. Significant migration occurred in one of 39 implanted fiducials in a patient with a large postoperative seroma. Conclusion OBI carbon fiducial-based setup can improve localization accuracy with minimal imaging artifacts. With increased localization accuracy, setup uncertainties can be reduced from 8mm using OBI bone matching to 3mm using OBI fiducial matching for PBI treatment. This work demonstrates the feasibility of utilizing carbon fiducials to increase localization accuracy to the lumpectomy cavity for PBI. This may be particularly attractive for localization in the setting of proton therapy and other scenarios in which metal clips are contraindicated.« less

Authors:
; ; ; ; ; ;  [1]
  1. Mayo Clinic, Rochester, MN (United States)
Publication Date:
OSTI Identifier:
22494063
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; IRRADIATION; LASERS; MAMMARY GLANDS; NEOPLASMS; PATIENTS; PROTON BEAMS; RADIOTHERAPY; SKELETON; SKIN

Citation Formats

Zhang, Y, Hieken, T, Mutter, R, Park, S, Yan, E, Brinkmann, D, and Pafundi, D. SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation. United States: N. p., 2015. Web. doi:10.1118/1.4924124.
Zhang, Y, Hieken, T, Mutter, R, Park, S, Yan, E, Brinkmann, D, & Pafundi, D. SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation. United States. doi:10.1118/1.4924124.
Zhang, Y, Hieken, T, Mutter, R, Park, S, Yan, E, Brinkmann, D, and Pafundi, D. Mon . "SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation". United States. doi:10.1118/1.4924124.
@article{osti_22494063,
title = {SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation},
author = {Zhang, Y and Hieken, T and Mutter, R and Park, S and Yan, E and Brinkmann, D and Pafundi, D},
abstractNote = {Purpose To investigate the feasibility of utilizing carbon fiducials to increase localization accuracy of lumpectomy cavity for partial breast irradiation (PBI). Methods Carbon fiducials were placed intraoperatively in the lumpectomy cavity following resection of breast cancer in 11 patients. The patients were scheduled to receive whole breast irradiation (WBI) with a boost or 3D-conformal PBI. WBI patients were initially setup to skin tattoos using lasers, followed by orthogonal kV on-board-imaging (OBI) matching to bone per clinical practice. Cone beam CT (CBCT) was acquired weekly for offline review. For the boost component of WBI and PBI, patients were setup with lasers, followed by OBI matching to fiducials, with final alignment by CBCT matching to fiducials. Using carbon fiducials as a surrogate for the lumpectomy cavity and CBCT matching to fiducials as the gold standard, setup uncertainties to lasers, OBI bone, OBI fiducials, and CBCT breast were compared. Results Minimal imaging artifacts were introduced by fiducials on the planning CT and CBCT. The fiducials were sufficiently visible on OBI for online localization. The mean magnitude and standard deviation of setup errors were 8.4mm ± 5.3 mm (n=84), 7.3mm ± 3.7mm (n=87), 2.2mm ± 1.6mm (n=40) and 4.8mm ± 2.6mm (n=87), for lasers, OBI bone, OBI fiducials and CBCT breast tissue, respectively. Significant migration occurred in one of 39 implanted fiducials in a patient with a large postoperative seroma. Conclusion OBI carbon fiducial-based setup can improve localization accuracy with minimal imaging artifacts. With increased localization accuracy, setup uncertainties can be reduced from 8mm using OBI bone matching to 3mm using OBI fiducial matching for PBI treatment. This work demonstrates the feasibility of utilizing carbon fiducials to increase localization accuracy to the lumpectomy cavity for PBI. This may be particularly attractive for localization in the setting of proton therapy and other scenarios in which metal clips are contraindicated.},
doi = {10.1118/1.4924124},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To find out whether tantalum surgical clips can be used for online position verification in treatment of the lumpectomy cavity (LC) in breast cancer patients. Tantalum is a high density metal that could be visible on Electronic Portal Images (EPIs) and be an affordable alternative to gold markers. Clips are considered more representative for the LC position than nearby bony structures. Methods: In twelve patients the surgeon had placed 2 to 5 tantalum clips in the LC. The AP and lateral fields used for portal imaging, were adapted. In doing so, both bony structures and tantalum clips were visiblemore » on EPIs. The following analyses were performed:1. Image degradation, with respect to delineating the CTV, of the axial CT slices by artefacts because of the tantalum clips was evaluated by a radiation oncologist;2. The visibility of the tantalum clips on the EPIs was evaluated by four radiation therapists (RTTs);3. Bony anatomy and tantalum clip matches were performed on the same images independently by two observers. Results: 1. Delineation of the CTV by the radiation oncologist was not hampered by CT image artefacts because of the clips.2. The mean score for visibility of the clips on the EPIs, analysed by the four RTTs, was 5.6 on a scale of 10 (range 3.9 – 8.0).3. In total 12 patients with 16 fractions each were analysed. The differences between clip match and bone match are significant with a mean vector length of 5.2 mm (SD 1.9 mm) for the difference. Conclusion: Results of matches on tantalum clips as compared to matches on bony structures differ substantially. Therefore clip matches can result in smaller CTV to PTV margins than bone matches. Visibility of the clips on EPIs is sufficient, so they can be an alternative to gold markers.« less
  • Purpose: CBCT is the current gold standard to verify prone breast patient setup. We investigated in a phantom if non-ionizing localization systems can replace ionizing localization systems for prone breast treatments. Methods: An anthropomorphic phantom was positioned on a prone breast board. Electromagnetic transponders were attached on the left chest surface. The CT images of the phantom were imported to the treatment planning system. The isocenter was set to the center of the transponders. The positions of the isocenter and transponders transferred to the transponder tracking system. The posterior phantom surface was contoured and exported to the optical surface trackingmore » system. A CBCT was taken for the initial setup alignment on the treatment machine. Using the electromagnetic and optical localization systems, the deviation of the phantom setup from the original CT images was measured. This was compared with the difference between the original CT and kV-CBCT images. Results: For the electromagnetic localization system, the phantom position deviated from the original CT in 1.5 mm, 0.0 mm and 0.5 mm in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) directions. For the optical localization system, the phantom position deviated from the original CT in 2.0 mm, −2.0 mm and 0.1 mm in the AP, SI and LR directions. For the CBCT, the phantom position deviated from the original CT in 4.0 mm, 1.0 mm and −1.0 mm in the AP, SI and LR directions. The measured values from the non-ionizing localization systems differed from those with the CBCT less than 3.0 mm in all directions. Conclusions: This phantom study showed the feasibility of using a combination of non-ionizing localization systems to achieve a similar setup accuracy as CBCT for prone breast patients. This could potentially eliminate imaging dose. As a next step, we are expanding this study to actual patients. This work has been in part supported by Departmental Research Award RODEPT1-JS001, Department of Radiation Oncology, UC Davis Medical Center.« less
  • Purpose: The aim of this work is to propose a method to optimize radioactive source localization (RSL) for non-palpable breast cancer surgery. RSL is commonly used as a guiding technique during surgery for excision of non-palpable tumors. A collimated hand-held detector is used to localize radioactive sources implanted in tumors. Incisions made by the surgeon are based on maximum observed detector counts, and tumors are subsequently resected based on an arbitrary estimate of the counts expected at the surgical margin boundary. This work focuses on building a framework to predict detector counts expected throughout the procedure to improve surgical margins.more » Methods: A gamma detection system called the Neoprobe GDS was used for this work. The probe consists of a cesium zinc telluride crystal and a collimator. For this work, an I-125 Best Medical model 2301 source was used. The source was placed in three different phantoms, a PMMA, a Breast (25%- glandular tissue/75%- adipose tissue) and a Breast (75-25) phantom with a backscatter thickness of 6 cm. Counts detected by the probe were recorded with varying amounts of phantom thicknesses placed on top of the source. A calibration curve was generated using MATLAB based on the counts recorded for the calibration dataset acquired with the PMMA phantom. Results: The observed detector counts data used as the validation set was accurately predicted to within ±3.2%, ±6.9%, ±8.4% for the PMMA, Breast (75-25), Breast (25–75) phantom respectively. The average difference between predicted and observed counts was −0.4%, 2.4%, 1.4% with a standard deviation of 1.2 %, 1.8%, 3.4% for the PMMA, Breast (75-25), Breast (25–75) phantom respectively. Conclusion: The results of this work provide a basis for characterization of a detector used for RSL. Counts were predicted to within ±9% for three different phantoms without the application of a density correction factor.« less
  • Purpose: To compare localization of the lumpectomy cavity by using breast surface matching vs. clips for image-guided external beam accelerated partial breast irradiation. Methods and Materials: Twenty-seven patients with breast cancer with two computed tomography (CT) scans each had three CT registrations performed: (1) to bony anatomy, (2) to the center of mass (COM) of surgical clips, and (3) to the breast surface. The cavity COM was defined in both the initial and second CT scans after each type of registration, and distances between COMs ({delta}COM{sub Bone}, {delta}COM{sub Clips}, and {delta}COM{sub Surface}) were determined. Smaller {delta}COMs were interpreted as bettermore » localizations. Correlation coefficients were calculated for {delta}COM vs. several variables. Results: The {delta}COM{sub Bone} (mean, 7 {+-} 2 [SD] mm) increased with breast volume (r = 0.4; p = 0.02) and distance from the chest wall (r = 0.5; p = 0.003). Relative to bony registration, clip registration provided better localization ({delta}COM{sub Clips} < {delta}COM{sub Bone}) in 25 of 27 cases. Breast surface matching improved cavity localization ({delta}COM{sub Surface} < {delta}COM{sub Bone}) in 19 of 27 cases. Mean improvements ({delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}) were 4 {+-} 3 and 2 {+-} 4 mm, respectively. In terms of percentage of improvement ([{delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}]/{delta}COM{sub Bone}), only surface matching showed a correlation with breast volume. Clip localization outperformed surface registration for cavities located superior to the breast COM. Conclusions: Use of either breast surface or surgical clips as surrogates for the cavity results in improved localization in most patients compared with bony registration and may allow smaller planning target volume margins for external beam accelerated partial breast irradiation. Compared with surface registration, clip registration may be less sensitive to anatomic characteristics and therefore more broadly applicable.« less
  • The purpose of this study was to evaluate the dose to normal tissues as a function of increasing margins around the lumpectomy cavity in accelerated partial breast irradiation (APBI) using 3D-conformal radiotherapy (3DCRT). Eight patients with Stage 0-I breast cancer underwent treatment planning for 3DCRT APBI. The clinical target volume (CTV) was defined as a 15-mm expansion around the cavity limited by the chest wall and skin. Three planning target volumes (PTV1, PTV2, PTV3) were generated for each patient using a 0, 5-, and 10-mm expansion around the CTV, for a total margin of 15, 20, and 25 mm. Threemore » treatment plans were generated for every patient using the 3 PTVs, and dose-volume analysis was performed for each plan. For each 5-mm increase in margin, the mean PTV:total breast volume ratio increased 10% and the relative increase in the mean ipsilateral breast dose was 15%. The mean volume of ipsilateral breast tissue receiving 75%, 50%, and 25% of the prescribed dose increased 6% to 7% for every 5 mm increase in PTV margin. Compared to lesions located in the upper outer quadrant, plans for medially located tumors revealed higher mean ipsilateral breast doses and 20% to 22% more ipsilateral breast tissue encompassed by the 25% IDL. The use of 3DCRT for APBI delivers higher doses to normal breast tissue as the PTV increases around the lumpectomy cavity. Efforts should be made to minimize the overall PTV when this technique is used. Ongoing studies will be necessary to determine the clinical relevance of these findings.« less