skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position

Abstract

Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weekly CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1%more » and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less

Authors:
; ; ;  [1]
  1. Sunnybrook Health Sciences Centre/Odette Cancer Centre, Toronto, Ontario (Canada)
Publication Date:
OSTI Identifier:
22494048
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; BLADDER; COMPUTERIZED TOMOGRAPHY; DATASETS; NEOPLASMS; PATIENTS; RADIATION DOSES; RADIOTHERAPY; RECTUM; SKELETON

Citation Formats

Kim, A, Foster, J, Chu, W, and Karotki, A. SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position. United States: N. p., 2015. Web. doi:10.1118/1.4924108.
Kim, A, Foster, J, Chu, W, & Karotki, A. SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position. United States. doi:10.1118/1.4924108.
Kim, A, Foster, J, Chu, W, and Karotki, A. Mon . "SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position". United States. doi:10.1118/1.4924108.
@article{osti_22494048,
title = {SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position},
author = {Kim, A and Foster, J and Chu, W and Karotki, A},
abstractNote = {Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weekly CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.},
doi = {10.1118/1.4924108},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To determine the dosimetric and toxicity differences between prone and supine position intensity-modulate radiotherapy in endometrial cancer patients treated with adjuvant radiotherapy. Methods: Forty-seven consecutive endometrial cancer patients treated with adjuvant RT were analyzed. Of these, 21 were treated in prone position and 26 in the supine position. Dose-volume histograms for normal tissue structures and targets were compared between the two groups. Acute and chronic toxicity were also compared between the cohorts. Results: The percentage of volume receiving 10, 20, 30, 40, 45, and 50 Gy for small bowel was 89.5%, 69%, 33%, 12.2%, 5%, and 0% in themore » prone group and 87.5%, 62.7%, 26.4%, 8%, 4.3%, and 0% in the supine group, respectively. The difference was not statistically significant. The dose-volume histograms for bladder and rectum were also comparable, except for a slightly greater percentage of volume receiving 10 Gy (1.5%) and 20 Gy (5%) for the rectum in the prone group. Acute small bowel toxicities were Grade 1 in 7 patients and Grade 2 in 14 patients in the prone group vs. Grade 1 in 6 patients and Grade 2 in 19 patients in the supine group. Chronic toxicity was Grade 1 in 7 patients and Grade 3 in 1 patient in the prone group and Grade 1 in 5 patients in the supine group. Conclusion: These preliminary results suggest that no difference exists in the dose to the normal tissue and toxicity between prone and supine intensity-modulated radiotherapy for endometrial cancer. Longer follow-up and more outcome studies are needed to determine whether any differences exist between the two approaches.« less
  • Purpose: The prone treatment position has been used to reduce ipsilateral lung and heart dose in left breast radiation. We conducted a retrospective study to evaluate the difference in the dosimetry between prone and supine treatment positions. Methods: Eight left breast cancer patients were simulated in both the supine and prone positions as a pretreatment evaluation for the optimal treatment position. Treatment plans were created for all patients in both the supine and prone positions using a field in field three dimensional planning technique. Prescribed dose was 45 Gy delivered by two tangential photon fields. Irradiated volume (IV) was evaluatedmore » by V50, V100, and dose to lung and heart by V5, V10, V20, and the mean dose were evaluated. Results: All dosimetry metrics for both the supine and prone plans met our internal normal structure guidelines which are based on Quantec data. The average IVs (50% and 100%) were 2223cc and 1361cc prone, 2315cc and 1315cc supine. The average ipsilateral lung Mean dose (0.83Gy prone vs 5.8Gy supine), V5 (1.6% prone vs 20.9% supine), V10 (0.78% prone vs 15% supine) and V20 (0.36% prone vs 11% supine) were significantly lower in prone position. Heart Mean dose (1.4Gy prone vs 2.9Gy supine), V10 (1.4% prone vs 5.0% supine) and V20 (0.4% prone vs 3.5% supine) were found improved for all patients except one where the mean dose was the same and all other values were improved. Conclusion: The prone position offer preferable dosimetry for all patients planned in our study. These patients were chosen based on the physician’s belief that they would benefit from prone treatment either because they had large pendulous breasts or due to the amount of heart seen in the field on CT simulation.« less
  • Purpose: Breast boards are used in breast radiation which increases normal lung and heart doses, when supraclavicular field is included. Therefore, in this study through dose volume histogram (DVHs), lung and heart doses comparison was done between two different setups i.e. with and without breast board, for the treatment of left chest wall and supraclavicular fossa in postmastectomy left breast cancer. Methods: In this study, CT-Simulation scans of ten breast cancer patients were done with and without breast board, at Shifa International Hospitals Islamabad, to investigate the differences between the two different setups of the irradiation of left chest wallmore » in terms of lung and heart doses. For immobilization, support under the neck, shoulders and arms was used. Precise PLAN 2.15 treatment planning system (TPS) was used for 3D-CRT planning. The total prescribed dose for both the plans was 5000 cGy/25 fractions. The chest wall was treated with a pair of tangential photon fields and the upper supraclavicular nodal regions were treated with an anterior photon field. A mono-isocentric technique was used to match the tangential fields with the anterior field at the isocentre. The dose volume histogram was used to compare the doses of heart and ipsilateral lung. Results: Both the plans of each patient were generated and compared. DVH results showed that for the same PTV dose coverage, plans without breast board resulted in a reduction of lung and heart doses compared with the plans with breast board. There was significant reductions in V20, V<25 and mean doses for lung and V<9 and mean doses for heart. Conclusion: In comparison of both the plans, setup without breast board significantly reduced the dose-volume of the ipsilateral lung and heart in left chest wall patients. Waived registration request has been submitted.« less
  • Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after themore » same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye award; Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.« less
  • Purpose: The target volume for Whole Breast Irradiation (WBI) is dictated by location of tumor mass, breast tissue distribution, and involvement of lymph nodes. Dose coverage and Organs at Risk (OARs) sparing can be difficult to achieve in patients with unfavorable thoracic geometries. For these cases, inverse-planned and 3D-conformal prone treatments can be alternatives to traditional supine 3D-conformal plans. A dosimetric comparison can determine which of these techniques achieve optimal target coverage while sparing OARs. Methods: This study included simulation datasets for 8 patients, 5 of whom were simulated in both supine and prone positions. Positioning devices included breast boardsmore » and Vaclok bags for the supine position, and prone breast boards for the prone position. WBI 3-D conformal plans were created for patients simulated in both positions. Additional VMAT and IMRT WBI plans were made for all patients in the supine position. Results: Prone and supine 3D conformal plans had comparable PTV coverage. Prone 3D conformal plans received a significant 50% decrease to V20, V10, V5 and V30% for the ipsilateral lung in contrast to the supine plans. The heart also experienced a 10% decrease in maximum dose in the prone position, and V20, V10, V5 and V2 had significantly lower values than the supine plan. Supine IMRT and VMAT breast plans obtained comparable PTV coverage. The heart experienced a 10% decrease in maximum dose with inverse modulated plans when compared to the supine 3D conformal plan, while V20, V10, V5 and V2 showed higher values with inverse modulated plans than with supine 3D conformal plans. Conclusion: Prone 3D-conformal, and supine inverse planned treatments were generally superior in sparing OARs to supine plans with comparable PTV coverage. IMRT and VMAT plans offer sparing of OARs from high dose regions with an increase of irradiated volume in the low dose regions.« less