skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study

Abstract

Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm{sup 3}. The impact of the motion on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared inmore » the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction techniques’ optimization. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the ‘Archimedes III: Funding of Research Groups in TEI of Athens’ project of the ‘Education & Lifelong Learning’ Operational Programme.« less

Authors:
; ;  [1];  [2]
  1. University of Patras, Rion, Ahaia (Greece)
  2. Technological Educational Institute of Athens, Egaleo, Attika (Greece)
Publication Date:
OSTI Identifier:
22494022
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANATOMY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED SIMULATION; DTPA; LUNGS; MONTE CARLO METHOD; MYOCARDIUM; PHANTOMS; RADIOPHARMACEUTICALS; SCINTISCANNING; SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY; SKELETON; SPATIAL RESOLUTION; TECHNETIUM 99

Citation Formats

Papadimitroulas, P, Kostou, T, Kagadis, G, and Loudos, G. SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study. United States: N. p., 2015. Web. doi:10.1118/1.4924077.
Papadimitroulas, P, Kostou, T, Kagadis, G, & Loudos, G. SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study. United States. doi:10.1118/1.4924077.
Papadimitroulas, P, Kostou, T, Kagadis, G, and Loudos, G. Mon . "SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study". United States. doi:10.1118/1.4924077.
@article{osti_22494022,
title = {SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study},
author = {Papadimitroulas, P and Kostou, T and Kagadis, G and Loudos, G},
abstractNote = {Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm{sup 3}. The impact of the motion on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared in the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction techniques’ optimization. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the ‘Archimedes III: Funding of Research Groups in TEI of Athens’ project of the ‘Education & Lifelong Learning’ Operational Programme.},
doi = {10.1118/1.4924077},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW)more » model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc–Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. Results: The results show that the Bouc–Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. Conclusions: The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.« less
  • Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients weremore » planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0.87 for 20 and 30mm motion respectively. For SBRT plans central axis dose values were within 1% upto 10mm motions but decreased to average of 5% for 20mm and 8% for 30mm motion. Mapcheck comparison with static showed penumbra enlargement due to motion blurring at the edges of the field for 3×3,5×5,10×10 pass rates were 88% to 12%, 100% to 43% and 100% to 63% respectively as motion increased from 5 to 30mm. For SBRT plans MapCheck mean pass rate were decreased from 73.8% to 39.5% as motion increased from 5mm to 30mm. Conclusion: Dose blurring effect has been seen in open fields as well as SBRT lung plans using NCDCA with CB which worsens with increasing respiratory motion and decreasing field size(tumor size). To reduce this effect larger margins and appropriate motion reduction techniques should be utilized.« less
  • Purpose: Use Varian TrueBeam Developer mode to quantify the mechanical limits of the couch and to simulate 4D respiratory motion. Methods: An in-house MATLAB based GUI was created to make the BEAM XML files. The couch was moved in a triangular wave in the S/I direction with varying amplitudes (1mm, 5mm, 10mm, and 50mm) and periods (3s, 6s, and 9s). The periods were determined by specifying the speed. The theoretical positions were compared to the values recorded by the machine at 50 Hz. HD videos were taken for certain tests as external validation. 4D Respiratory motion was simulated by anmore » A/P MV beam being delivered while the couch moved in an elliptical manner. The ellipse had a major axis of 2 cm (S/I) and a minor axis of 1 cm (A/P). Results: The path planned by the TrueBeam deviated from the theoretical triangular form as the speed increased. Deviations were noticed starting at a speed of 3.33 cm/s (50mm amplitude, 6s period). The greatest deviation occurred in the 50mm- 3s sequence with a correlation value of −0.13 and a 27% time increase; the plan essentially became out of phase. Excluding these two, the plans had correlation values of 0.99. The elliptical sequence effectively simulated a respiratory pattern with a period of 6s. The period could be controlled by changing the speeds or the dose rate. Conclusion: The work first shows the quantification of the mechanical limits of the couch and the speeds at which the proposed plans begin to deviate. These limits must be kept in mind when programming other couch sequences. The methodology can be used to quantify the limits of other axes. Furthermore, the work shows the possibility of creating 4D respiratory simulations without using specialized phantoms or motion-platforms. This can be further developed to program patient-specific breathing patterns.« less
  • Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less
  • Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone imagemore » and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.« less