skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System

Abstract

Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third party vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fallmore » outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating processes for increased efficiencies.« less

Authors:
; ;  [1]
  1. The Cleveland Clinic, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22494011
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; APPROXIMATIONS; FLUOROSCOPY; PATIENTS; PERSONNEL; RADIATION DOSES; TRAINING

Citation Formats

Fisher, R, Wunderle, K, and Lingenfelter, M. SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System. United States: N. p., 2015. Web. doi:10.1118/1.4924055.
Fisher, R, Wunderle, K, & Lingenfelter, M. SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System. United States. doi:10.1118/1.4924055.
Fisher, R, Wunderle, K, and Lingenfelter, M. Mon . "SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System". United States. doi:10.1118/1.4924055.
@article{osti_22494011,
title = {SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System},
author = {Fisher, R and Wunderle, K and Lingenfelter, M},
abstractNote = {Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third party vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fall outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating processes for increased efficiencies.},
doi = {10.1118/1.4924055},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to matchmore » the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in part sponsored by corporate funding from BrainLAB AG.(BrainLAB AG, Feldkirchen, Germany)« less
  • Recent developments made MRI-guided radiotherapy feasible. Simultaneously performed imaging during dose delivery reveals the influence of changes in anatomy not yet known at the planning stage. When targeting highly motile abdominal organs, respiratory gating is commonly employed in MRI and investigated in external beam radiotherapy to mitigate malicious motion effects. The purpose of the presented work is to investigate anatomy-adaptive dose reconstruction in the treatment of abdominalorgans using concurrent (duplex) gating of an integrated MRlinac modality.Using navigators, 3D-MR images were sampled during exhale phase, requiring 3s per axial volume (360×260×100mm{sup 3}, waterselective T1w-FFE). Deformation vector fields (DVF) were calculated formore » all imaging dynamics with respect to initial anatomy, yielding an estimation of anatomy changes over the time of a fraction. A pseudo-CT was generated from the outline of a reference MR image, assuming a water-filled body. Consecutively, a treatment was planned on a fictional kidney lesion and optimized simulating a 6MV linac in a 1.5T magnetic field. After delivery, using the DVF, the pseudo-CT was deformed and dose accumulated for every individual gating interval yielding the true accumulated dose on the dynamic anatomy during beam-on.Dose-volume parameters on the PTV show only moderate changes when incorporating motion, i.e. ΔD{sub 99} (GTV)=0.3Gy with D{sub 99} (GTV)=20Gy constraints. However, local differences in the PTV region showed underdosages as high as 2.7Gy and overdosages up to 1.4Gy as compared to the optimized dose on static anatomy.A dose reconstruction toolchain was successfully implemented and proved its potential in the duplex gated treatment of abdominal organs by means of an MR-linac modality. While primary dose constraints were not violated on the fictional test data, large deviations could be found locally, which are left unaccounted for in conventional treatments. Dose-tracking of both target structures and organs at risk using 3D MRI during treatment enables truly adaptive hypofractionated radiotherapy. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
  • Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with anmore » air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.« less
  • Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less
  • Purpose: Medical advances have resulted in cancer patients living longer as evidenced by the number of patients seen for possible re-irradiation. Original normal tissue dose volume constraints remain in the re-irradiation setting to minimize normal tissue toxicity. This work correlates estimates of equivalent dose and repair with sequelae. Methods: CNS and GI tract re-irradiation patient follow-up records (including imaging studies) were reviewed with side effects correlated with the calculated EQD2 and repair estimates. Results: Follow-up records for 16 re-irradiation patients with potential overlap to the spinal cord were analyzed. The mean time interval between 1st and last courses was 76.6more » months. Three patients underwent a 3rd course of radiotherapy with a mean time interval between 2nd and final courses of 19.7 months. The mean values for assumed repair were 18.8% and 8.3%, respectively. The calculated total EQD2 doses were 48.09Gy and 50.98Gy with and without repair. At a mean follow-up time of 5.0 months, 6 patients were deceased and no records indicate radiation related neurological deficits. The records for 11 patients with potential overlap to the bowel were also analyzed. The mean time interval between 1st and last courses was 105.9 months. The mean value for assumed repair was 15.9%. The calculated total EQD2 doses were 64.96Gy and 70.80Gy with and without repair. At a mean follow-up time of 4.9 months, 6 patients were deceased, one having a potential enteric fistulization of the bladder. Clinical review of the case determined that the fistula was caused by tumor progression and not a side effect of radiotherapy treatments. Conclusion: Application of the EQD2 method in the re-irradiation setting using conservative estimates of repair is presented. Adhering to accepted dose volume limits following this application is demonstrated to be safe through empirical records as limited by this small patient cohort and short follow-up.« less