skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements

Abstract

Purpose: Several vendors of diagnostic lead apron used routinely in radiology/fluoroscopy claim to manufacture 0.5 mm lead equivalent shielding. The purpose of this investigation was to address the concern of the weight of lead aprons versus the radiation protection they provide. Methods: Seven diagnostic lead aprons were measured and compared for their radiation transmission and attenuation characteristics. The measurements were performed on a Philips Integris. Two settings were used, normal (76 kVp, 14.3 mA) and high (110 kVp, 12.3 mA) to represent typical patient and large patient thickness. Plastic water was placed on the table to represent patient scatter. A Capintec PM-500 ion chamber was placed at approximate chest height where hospital personnel would stand. An uncovered, i.e. lead-unhindered, ion chamber reading was taken to establish the baseline reading of an unprotected personnel. The ion chamber was then wrapped with 0.5mm 99.9% pure Pb material to establish the measurement reading when a diagnostic lead apron attenuates as adequately as 0.5mm Pb. The lead aprons were measured one at a time with the ion chamber fully covered and enclosed within the aprons. Results: On Normal fluoroscopy setting, the 0.5mm pure Pb showed a transmission of 0.4%. No aprons showed a transmissionmore » value as low as 0.5mm Pb. The lowest transmission value measured from the aprons was 2.0%, having a 1.5% higher transmission than pure lead. On High fluoroscopy setting, the lowest apron transmission measurement was at 2.8%, which was comparable to the 0.5mm pure Pb which gave a transmission of 3.0%. Conclusion: At Normal fluoroscopy setting, the 0.5mm Pb provided an attenuation that could not be matched by any apron measured. At High fluoroscopy setting, only one apron exhibited comparable transmission values as 0.5mm pure Pb.« less

Authors:
; ; ; ; ; ;  [1]
  1. Willis-Knighton Medical Center, Shreveport, LA (United States)
Publication Date:
OSTI Identifier:
22494009
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; ATTENUATION; CHEST; FLUOROSCOPY; HOSPITALS; IONIZATION CHAMBERS; PATIENTS; PERSONNEL; RADIATION PROTECTION; SHIELDING; THICKNESS

Citation Formats

Syh, J, Patel, B, Syh, J, Song, X, Freund, D, Ding, X, and Wu, H. SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements. United States: N. p., 2015. Web. doi:10.1118/1.4924053.
Syh, J, Patel, B, Syh, J, Song, X, Freund, D, Ding, X, & Wu, H. SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements. United States. doi:10.1118/1.4924053.
Syh, J, Patel, B, Syh, J, Song, X, Freund, D, Ding, X, and Wu, H. Mon . "SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements". United States. doi:10.1118/1.4924053.
@article{osti_22494009,
title = {SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements},
author = {Syh, J and Patel, B and Syh, J and Song, X and Freund, D and Ding, X and Wu, H},
abstractNote = {Purpose: Several vendors of diagnostic lead apron used routinely in radiology/fluoroscopy claim to manufacture 0.5 mm lead equivalent shielding. The purpose of this investigation was to address the concern of the weight of lead aprons versus the radiation protection they provide. Methods: Seven diagnostic lead aprons were measured and compared for their radiation transmission and attenuation characteristics. The measurements were performed on a Philips Integris. Two settings were used, normal (76 kVp, 14.3 mA) and high (110 kVp, 12.3 mA) to represent typical patient and large patient thickness. Plastic water was placed on the table to represent patient scatter. A Capintec PM-500 ion chamber was placed at approximate chest height where hospital personnel would stand. An uncovered, i.e. lead-unhindered, ion chamber reading was taken to establish the baseline reading of an unprotected personnel. The ion chamber was then wrapped with 0.5mm 99.9% pure Pb material to establish the measurement reading when a diagnostic lead apron attenuates as adequately as 0.5mm Pb. The lead aprons were measured one at a time with the ion chamber fully covered and enclosed within the aprons. Results: On Normal fluoroscopy setting, the 0.5mm pure Pb showed a transmission of 0.4%. No aprons showed a transmission value as low as 0.5mm Pb. The lowest transmission value measured from the aprons was 2.0%, having a 1.5% higher transmission than pure lead. On High fluoroscopy setting, the lowest apron transmission measurement was at 2.8%, which was comparable to the 0.5mm pure Pb which gave a transmission of 3.0%. Conclusion: At Normal fluoroscopy setting, the 0.5mm Pb provided an attenuation that could not be matched by any apron measured. At High fluoroscopy setting, only one apron exhibited comparable transmission values as 0.5mm pure Pb.},
doi = {10.1118/1.4924053},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVpmore » and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.« less
  • Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280more » ∼780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from −3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 μGy, 337.0 μGy, 323.1μGy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3μGy), 12.4 %(42 μGy), 87.1%(281.4μGy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.« less
  • Purpose: Lightweight lead-free or lead-composite protective garments exploit k-edge interactions to attenuate scattered X-rays. Manufacturers specify the protective value of garments in terms of lead equivalence at a single kVp. This is inadequate, as the protection provided by such garments varies with radiation quality in different use conditions. We present a method for matching scattered X-ray spectra to primary X-ray spectra. The resulting primary spectra can be used to measure penetration through protective garments, and such measurements can be weighted and summed to determine a Diagnostic Radiation Index for Protection (DRIP). Methods: Scattered X-ray spectra from fluoroscopic procedures were modeledmore » using Monte Carlo techniques in MCNP-X 2.7. Data on imaging geometry, operator position, patient size, and primary beam spectra were gathered from clinical fluoroscopy procedures. These data were used to generate scattered X-ray spectra resulting from procedural conditions. Technical factors, including kV and added filtration, that yielded primary X-ray spectra that optimally matched the generated scattered X-ray spectra were identified through numerical optimization using a sequential quadratic programming (SQP) algorithm. Results: The primary spectra generated with shape functions matched the relative flux in each bin of the scattered spectra within 5%, and half and quarter-value layers matched within 0.1%. The DRIP for protective garments can be determined by measuring the penetration through protective garments using the matched primary spectra, then calculating a weighted average according to the expected clinical use of the garment. The matched primary spectra are specified in terms of first and second half-value layers in aluminum and acrylic. Conclusion: Lead equivalence is inadequate for completely specifying the protective value of garments. Measuring penetration through a garment using full scatter conditions is very difficult. The primary spectra determined in this work allow for practical primary penetration measurements to be made with equipment readily available to clinical medical physicists.« less
  • Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detectormore » was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.« less
  • Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatmentmore » CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)« less