skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum dynamics on a three-sheeted six-dimensional ab initio potential-energy surface of the phosphine cation: Simulation of the photoelectron spectrum and the ultrafast radiationless decay dynamics

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4935601· OSTI ID:22493250
;  [1];  [2]
  1. Department of Chemistry, Technische Universität München, D-85748, Garching (Germany)
  2. Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have been computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.

OSTI ID:
22493250
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 19; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English