skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and optical investigations of oxygen defects in zinc oxide nanoparticles

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4917664· OSTI ID:22490231
;  [1]
  1. Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sec. 62, Noida. (U.P.)-201307 (India)

ZnO nanoparticles (NPs) were prepared implementing chemical precipitation method. Structural and optical characterizations of synthesized ZnO NPs were thoroughly probed applying X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), UV- Visible absorption and fluorescence (FL) spectroscopy. The XRD and TEM analyses revealed hexagonal wurtzite phase with 25-30 nm size. EDX analysis indicated oxygen (O) rich composition of nanoparticles. In accordance with EDX, XPS analysis verifies O{sub i} rich stoichiometry of prepared NPs. Furthermore, concurrence of lattice oxygen (O{sub L}), interstitial oxygen (O{sub i}) and oxygen vacancy (V{sub O}) in ZnO NPs was demonstrated through XPS analysis. Size quantization of nanoparticles is evident by blue shift of UV-Visible absorption energy. The FL spectroscopic investigations ascertain the existence of several discrete and defect states and radiative transitions occurring therein. Display of visible emission from oxygen defect states and most importantly, excess of O{sub i} defects in prepared ZnO nanoparticles, was well established through FL study.

OSTI ID:
22490231
Journal Information:
AIP Conference Proceedings, Vol. 1665, Issue 1; Conference: 59. DAE solid state physics symposium 2014, Tamilnadu (India), 16-20 Dec 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English