skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4941401· OSTI ID:22489414

Plasmonic nanostructures confine light to sub-wavelength scales, resulting in drastically enhanced light-matter interactions. Recent interest has focused on controlled symmetry breaking to create higher-order multipole plasmonic modes that store electromagnetic energy more efficiently than dipole modes. Here we demonstrate that four-beam holographic lithography enables fabrication of large-area plasmonic crystals with near-field coupled plasmons as well as deliberately broken symmetry to sustain multipole modes and Fano-resonances. Compared with the spectrally broad dipole modes we demonstrate an order of magnitude improved Q-factors (Q = 21) when the quadrupole mode is activated. We further demonstrate continuous tuning of the Fano-resonances using the polarization state of the incident light beam. The demonstrated technique opens possibilities to extend the rich physics of multipole plasmonic modes to wafer-scale applications that demand low-cost and high-throughput.

OSTI ID:
22489414
Journal Information:
Applied Physics Letters, Vol. 108, Issue 5; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English