skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Frozen flux violation, electron demagnetization and magnetic reconnection

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4932332· OSTI ID:22486409
 [1]; ;  [2];  [3]
  1. Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)
  2. SciberQuest, Del Mar, California 92014 (United States)
  3. Los Alamos National Lab, Los Alamos, New Mexico 87544 (United States)

We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable “frozen flux” slippage to occur. This condition differs from the violation of the “frozen-in” condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electrons which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, Λ{sub Φ}, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ϒ, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid “ion-diffusion” region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred separatrices, demonstrating that Λ{sub Φ} ≠ 0 violations are present over significant distances (in ion inertial units) from the separator identified by the 2D flux function; these violations are, however, generally weaker than seen at known separators in 2D simulations.

OSTI ID:
22486409
Journal Information:
Physics of Plasmas, Vol. 22, Issue 10; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English