skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of shape anisotropy in embedded low contrast submonolayer quantum dot structures

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4938399· OSTI ID:22486268
; ;  [1]; ;  [1];  [2]
  1. Department of Physics, Queens College of CUNY, Queens, New York 11367 (United States)
  2. The Graduate Center, CUNY, New York, New York 10016 (United States)

We describe a procedure for the morphological characterization of hard-to-image submonolayer quantum dot structures. This procedure employs high resolution x-ray diffraction based reciprocal space mapping, accompanied by rigorous diffraction modeling for precise determination of the morphology of submonolayer quantum dots. Our modelling results and experimental data clearly show that the investigated quantum dots are anisotropically elongated along the [110] orientation. Complementary polarization dependent photoluminescence measurements, combined with our previously reported magneto-photoluminescence data, confirm this conclusion. Our formalism enables direct extraction of structural information of complex embedded three-dimensional structures, which, due to their low electron density contrast with respect to the surrounding host matrix, cannot be readily investigated by traditional electron diffraction techniques.

OSTI ID:
22486268
Journal Information:
Applied Physics Letters, Vol. 107, Issue 25; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English