skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4935807· OSTI ID:22482603
; ; ; ;  [1]; ;  [2]
  1. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)
  2. Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H{sub 2}Se and H{sub 2}S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuIn{sub x}Ga{sub 1−x}Se{sub 2} (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25–400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

OSTI ID:
22482603
Journal Information:
Review of Scientific Instruments, Vol. 86, Issue 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English

Cited By (2)

Defect activation and annihilation in CIGS solar cells: an operando X-ray microscopy study text January 2020
Defect activation and annihilation in CIGS solar cells: an operando x-ray microscopy study journal February 2020