skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ab initio study of Ga-GaN system: Transition from adsorbed metal atoms to a metal–semiconductor junction

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4927166· OSTI ID:22479661
; ;  [1];  [2]
  1. Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland)
  2. Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland and Interdisciplinary Centre for Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw (Poland)

Ab initio studies of a GaN(0001)-Ga system with various thicknesses of a metallic Ga layer were undertaken. The studied systems extend from a GaN(0001) surface with a fractional coverage of gallium atoms to a Ga-GaN metal–semiconductor (m–s) contact. Electronic properties of the system are simulated using density functional theory calculations for different doping of the bulk semiconductor. It is shown that during transition from a bare GaN(0001) surface to a m–s heterostructure, the Fermi level stays pinned at a Ga-broken bond highly dispersive surface state to Ga–Ga states at the m–s interface. Adsorption of gallium leads to an energy gain of about 4 eV for a clean GaN(0001) surface and the energy decreases to 3.2 eV for a thickly Ga-covered surface. The transition to the m–s interface is observed. For a thick Ga overlayer such interface corresponds to a Schottky contact with a barrier equal to 0.9 and 0.6 eV for n- and p-type, respectively. Bond polarization-related dipole layer occurring due to an electron transfer to the metal leads to a potential energy jump of 1.5 eV, independent on the semiconductor doping. Additionally high electron density in the Ga–Ga bond region leads to an energy barrier about 1.2 eV high and 4 Å wide. This feature may adversely affect the conductivity of the n-type m–s system.

OSTI ID:
22479661
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 33, Issue 6; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English