skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The stress, surface spin and dipolar interaction in the diluted NiFe{sub 2}O{sub 4} nanoparticles by the SiO{sub 2} matrix: Characterization and analyses

Journal Article · · Materials Characterization

Well-dispersed uniform NiFe{sub 2}O{sub 4} nanoparticles (NPs) with an average particle size of 15.4 nm were synthesized by thermal decomposition of a metal–organic salt, and then were diluted in a SiO{sub 2} matrix via a sol–gel method with different concentration. The magnetization (M) dependence of NiFe{sub 2}O{sub 4}/SiO{sub 2} on the temperature (T) and on the applied magnetic field (H) was systematically characterized by the Quantum Design superconducting quantum interference device (SQUID) PPMS system. The results of M ~ H/T divide the magnetic properties between 10 K and 300 K into two regions: the low temperature blocked-particle regime below the blocking temperature T{sub B} and the interacting superparamagnetic (ISP) regime above T{sub B}. In the ISP regime, all samples deviate from the ideal Langevin superparamagnetic behavior due to the effective anisotropy induced by the stress, surface spins and interparticle dipolar interaction. The Raman spectra indicate that the stress in all samples exhibits the vibration behavior, which leads to the effective anisotropy and hence coercivity vibration. - Graphical abstract: Display Omitted - Highlights: • Increase of NiFe{sub 2}O{sub 4} NPs' concentration elevates T{sub B} and broadens ZFC peak. • NiFe{sub 2}O{sub 4}/SiO{sub 2} samples do not exhibit the ideal superparamagnetism above T{sub B}. • Stress leads to the effective anisotropy and hence H{sub c} vibration. • Stress vibration was characterized in detail by the Raman spectra.

OSTI ID:
22476176
Journal Information:
Materials Characterization, Vol. 107; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English