skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical property investigations of polystyrene capped Ca{sub 2}P{sub 2}O{sub 7}:Dy{sup 3+} persistent phosphor

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2];  [1]
  1. Department of Metallurgical and Materials Engineering, VNIT, Nagpur 440010 (India)
  2. Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India)

Highlights: • Synthesis of polymer capped pyrophosphate phosphors by citrate gel method. • Radiative lifetime is calculated from parameters of Judd-Ofelt theory and ICP-AES. • Reaction mechanism is discussed leading to high photoluminescence efficiency. • PL emission spectrum reveals broad band emission suitable for solid state lighting. - Abstract: By virtue of enhanced photosensivity, good optical response and better thermal stability, organic–inorganic hybrid materials are contemplated as one of the alternatives for designing advanced optoelectronic devices and innovative photonic applications. A novel inorganic organic hybrid Ca{sub 2}P{sub 2}O{sub 7}:Dy{sup 3+} phosphor has been fabricated by Pechini method. The optical property of synthesized phosphor is successfully altered by the in corporation of polystyrene sulfonic acid as capping agent in the colloidal solution. The phase purity and the average particle size of the prepared phosphor were calculated from X-ray diffraction (XRD) employing Debye Scherrer method. The morphological and chemical investigations were carried out through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The radiative transitions are explained on the basis of Judd-Ofelt theory and on the basis of derived parameters, the radiative lifetime of persistent hybrid Ca{sub 2}P{sub 2}O{sub 7}:Dy{sup 3+} phosphor is calculated as 5.33 ms. This paper explores the mechanism leading to high photoluminescence efficiency using organic capping additives. The photoluminescence (PL) graphs reveal broad band emission at 482 nm (blue) and 573 nm (yellow) corresponding to {sup 4}F{sub 9/2}-{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}-{sup 6}H{sub 13/2} transitions of Dy{sup 3+}, respectively. The Commission International De I-Eclairage (CIE) chromaticity co-ordinates were calculated from emission spectra and the values (x, y) were approaching to standard value of white emission. The synthesized pyrophosphate phosphors can thereby account in multiple potential applications including white light emitting diodes.

OSTI ID:
22475982
Journal Information:
Materials Research Bulletin, Vol. 70; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English