skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

Abstract

The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a uniquemore » vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.« less

Authors:
 [1];  [2]
  1. Technische Universität Darmstadt, Joint Research Laboratory Nanomaterials, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany)
  2. (Germany)
Publication Date:
OSTI Identifier:
22475603
Resource Type:
Journal Article
Journal Name:
Journal of Solid State Chemistry
Additional Journal Information:
Journal Volume: 225; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0022-4596
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BARIUM COMPOUNDS; CATIONS; COMPARATIVE EVALUATIONS; FERRITES; FLUORIDES; FLUORINATION; IRON IONS; ORGANIC FLUORINE COMPOUNDS; OXYFLUORIDES; PEROVSKITE; POLYVINYLS; STOICHIOMETRY; VACANCIES

Citation Formats

Clemens, Oliver, E-mail: oliver.clemens@kit.edu, and Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites. United States: N. p., 2015. Web. doi:10.1016/J.JSSC.2014.12.027.
Clemens, Oliver, E-mail: oliver.clemens@kit.edu, & Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites. United States. doi:10.1016/J.JSSC.2014.12.027.
Clemens, Oliver, E-mail: oliver.clemens@kit.edu, and Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen. Fri . "Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites". United States. doi:10.1016/J.JSSC.2014.12.027.
@article{osti_22475603,
title = {Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites},
author = {Clemens, Oliver, E-mail: oliver.clemens@kit.edu and Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen},
abstractNote = {The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.},
doi = {10.1016/J.JSSC.2014.12.027},
journal = {Journal of Solid State Chemistry},
issn = {0022-4596},
number = ,
volume = 225,
place = {United States},
year = {2015},
month = {5}
}