skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long none coding RNA HOTTIP/HOXA13 act as synergistic role by decreasing cell migration and proliferation in Hirschsprung disease

Journal Article · · Biochemical and Biophysical Research Communications
; ; ; ; ;  [1];  [2];  [1];  [1]
  1. Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008 (China)
  2. Department of Pediatric Surgery, Anhui Provincial Children's Hospital, Anhui 230000 (China)

Long noncoding RNAs (lncRNAs) have been confirmed to be associated with various human diseases. However, whether they are associated with Hirschsprung disease (HSCR) progression remains unclear. In this study, we designed the experiment to explore the relationship between lncRNA HOTTIP and HOXA13, and their pathogenicity to HSCR. Quantitative real-time PCR and Western blot were performed to detect the levels of lncRNA, mRNAs, and proteins in colon tissues from 79 patients with HSCR and 79 controls. Small RNA interference transfection was used to study the function experiments in human 293T and SK-N-BE cell lines. The cell viability and activities were detected by the transwell assays, CCK8 assay, and flow cytometry, respectively. LncRNA HOTTIP and HOXA13 were significantly down-regulated in HSCR compared to the controls. Meanwhile, the declined extent of their expression levels makes sense between two main phenotype of HSCR. SiRNA-mediated knock-down of HOTTIP or HOXA13 correlated with decreased levels of each other and both reduced the cell migration and proliferation without affecting cell apoptosis or cell cycle. Our study demonstrates that aberrant reduction of HOTTIP and HOXA13, which have a bidirectional regulatory loop, may play an important role in the pathogenesis of HSCR. - Highlights: • LncRNA HOTTIP and HOXA13 are both down-regulated in HSCR. • HOTTIP and HOXA13 can regulate each other in 293T and SK-N-BE(2) cell lines. • Both HOTTIP and HOXA13 can decrease cell migration and proliferation.

OSTI ID:
22462137
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 463, Issue 4; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English