skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of retinoid X receptor gamma expression by fed state in mouse liver

Abstract

Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mousemore » liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.« less

Authors:
 [1];  [2];  [3];  [3];  [4]
  1. Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of)
  2. Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of)
  3. Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)
  4. (Korea, Republic of)
Publication Date:
OSTI Identifier:
22458506
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 458; Journal Issue: 1; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ADIPOSE TISSUE; FASTING; FEEDING; GENES; GLUCOSE; GLYCOLYSIS; INSULIN; LIPIDS; LIVER; LIVER CELLS; LUCIFERASE; MICE; PHOSPHOENOLPYRUVATE; PROMOTERS; RECEPTORS; RETINOIC ACID; STEROLS; TRANSCRIPTION

Citation Formats

Park, Sangkyu, E-mail: 49park@cku.ac.kr, Lee, Yoo Jeong, Ko, Eun Hee, Kim, Jae-woo, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752. Regulation of retinoid X receptor gamma expression by fed state in mouse liver. United States: N. p., 2015. Web. doi:10.1016/J.BBRC.2015.01.082.
Park, Sangkyu, E-mail: 49park@cku.ac.kr, Lee, Yoo Jeong, Ko, Eun Hee, Kim, Jae-woo, & Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752. Regulation of retinoid X receptor gamma expression by fed state in mouse liver. United States. doi:10.1016/J.BBRC.2015.01.082.
Park, Sangkyu, E-mail: 49park@cku.ac.kr, Lee, Yoo Jeong, Ko, Eun Hee, Kim, Jae-woo, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752. 2015. "Regulation of retinoid X receptor gamma expression by fed state in mouse liver". United States. doi:10.1016/J.BBRC.2015.01.082.
@article{osti_22458506,
title = {Regulation of retinoid X receptor gamma expression by fed state in mouse liver},
author = {Park, Sangkyu, E-mail: 49park@cku.ac.kr and Lee, Yoo Jeong and Ko, Eun Hee and Kim, Jae-woo and Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752},
abstractNote = {Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.},
doi = {10.1016/J.BBRC.2015.01.082},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 458,
place = {United States},
year = 2015,
month = 2
}
  • Nuclear receptors (NRs) are conditional transcription factors with common multidomain organization that bind diverse DNA elements. How DNA sequences influence NR conformation is poorly understood. Here we report the crystal structure of the human retinoid X receptor α–liver X receptor β (RXRα–LXRβ) heterodimer on its cognate element, an AGGTCA direct repeat spaced by 4 nt. The complex has an extended X-shaped arrangement, with DNA- and ligand-binding domains crossed, in contrast to the parallel domain arrangement of other NRs that bind an AGGTCA direct repeat spaced by 1 nt. The LXRβ core binds DNA via canonical contacts and auxiliary DNA contactsmore » that enhance affinity for the response element. Comparisons of RXRα–LXRβs in the crystal asymmetric unit and with previous NR structures reveal flexibility in NR organization and suggest a role for RXRα in adaptation of heterodimeric complexes to DNA.« less
  • Recombinant E. coli-derived murine IFN-..gamma.. (Mu-rIFN-..gamma..; 5 x 10/sup 7/ U/mg) was radiolabeled with /sup 125/I by the chloramine-T method without loss of its antiviral activity. The /sup 125/I-Mu-rIFN-..gamma.. showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 x 10/sup -10/ M. Binding of /sup 125/I-Mu-rIFn-..gamma.. to cells inhibited by both natural (glycosylated) and rIFN-..gamma.., but not by IFN-..gamma../..beta... Receptor-bound /sup 125/I-Mu-rIFN-..gamma.. was rapidly internalized when incubation temperature was raised from 4/sup 0/C to 37/sup 0/C. On internalization, almost no IFN-..gamma.. degradation was observed during 16 hr incubation.more » /sup 125/I-Mu-rIFN-..gamma.. binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-..gamma.., but not with IFN-..cap alpha../..beta... This receptor down-regulation was dose-dependent: 90% reduction of /sup 125/I-Mu-rIFN-..gamma.. binding was observed after preincubation with 100 U/ml. After removal of IFN-..gamma.. from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of /sup 125/I-Mu-rIFN-..gamma.. to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000.« less
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, ormore » 500 ng/kg body weight (bw) day{sup -1}) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day{sup -1}. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.« less
  • Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found thatmore » FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.« less
  • The mouse growth hormone receptor (mGHR) and the mouse growth hormone-binding protein (mGHBP) are products of a single gene which are generated alternative splicing. The factors that regulate the expression of mGHR and mGHBP mRNA and protein during pregnancy in the mouse are incompletely understood. During pregnancy in the mouse, there are parallel increases in circulating mouse growth hormone (mGH), liver mGHR, and serum mGHBP. The increase in both hepatic mGHR and serum mGHBP begins on Day 9 of gestation and by late gestation the hepatic mGHR content has increased 8-fold and serum mGHBP has increased 30-fold compared with valuesmore » in nonpregnant controls. A parallel increase occurs in the steady state levels of liver GHR and GHBP encoding mRNAs. The increase in both messages begins on Day 9 of gestation; however, the GHR mRNA reaches maximum levels by Day 13, while the GHBP mRNA continues to increase until the end of pregnancy. The magnitude of the increase in the GHR-encoding message is 15- to 20-fold between nonpregnant and late pregnant mice, and the magnitude of the increase in the GHBP-encoding message is 30- to 50-fold. Both pituitary mGH and the number of conceptuses influence the receptors and binding protein for mGH during pregnancy. 22 refs.« less