skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gamma ray tests of Minimal Dark Matter

Abstract

We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

Authors:
 [1];  [2];  [3]; ;  [1]
  1. Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)
  2. Service de Physique Theórique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)
  3. Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)
Publication Date:
Sponsoring Org.:
SCOAP3, CERN, Geneva (Switzerland)
OSTI Identifier:
22458392
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 10; Other Information: PUBLISHER-ID: JCAP10(2015)026; OAI: oai:repo.scoap3.org:12240; Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ANNIHILATION; ASTROPHYSICS; BOSONS; FERMIONS; GAMMA RADIATION; HYPERCHARGE; MILKY WAY; NONLUMINOUS MATTER; PROBES; TEV RANGE; WEINBERG-SALAM GAUGE MODEL

Citation Formats

Cirelli, Marco, Hambye, Thomas, Panci, Paolo, Sala, Filippo, and Taoso, Marco. Gamma ray tests of Minimal Dark Matter. United States: N. p., 2015. Web. doi:10.1088/1475-7516/2015/10/026.
Cirelli, Marco, Hambye, Thomas, Panci, Paolo, Sala, Filippo, & Taoso, Marco. Gamma ray tests of Minimal Dark Matter. United States. doi:10.1088/1475-7516/2015/10/026.
Cirelli, Marco, Hambye, Thomas, Panci, Paolo, Sala, Filippo, and Taoso, Marco. 2015. "Gamma ray tests of Minimal Dark Matter". United States. doi:10.1088/1475-7516/2015/10/026.
@article{osti_22458392,
title = {Gamma ray tests of Minimal Dark Matter},
author = {Cirelli, Marco and Hambye, Thomas and Panci, Paolo and Sala, Filippo and Taoso, Marco},
abstractNote = {We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.},
doi = {10.1088/1475-7516/2015/10/026},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 10,
volume = 2015,
place = {United States},
year = 2015,
month =
}
  • We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has amore » cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.« less
  • Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2){sub L}, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array,more » which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.« less
  • Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2){sub L}, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array,more » which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.« less
  • We present a dark matter extension of the minimal supersymmetric standard model to give the recent trend of the high energy positron spectrum of the PAMELA/HEAT experiments. If the trend is caused indeed by dark matter, the minimal supersymmetric standard model needs to be extended. Here, we minimally extend the minimal supersymmetric standard model with one more dark matter component N together with a heavy lepton E and introduce the coupling e{sub R}E{sub R}{sup c}N{sub R}. This coupling naturally appears in the flipped SU(5) grand unification models. We also present the needed parameter ranges of these additional particles.
  • The minimal metagravity theory, explicitly violating the general covariance but preserving the unimodular one, is applied to study the evolution of the isotropic homogeneous Universe. The massive scalar graviton, contained in the theory in addition to the massless tensor one, is treated as a source of dark matter and/or dark energy. The modified Friedmann equation for the scale factor of the Universe is derived. The question whether the minimal metagravity can emulate the LCDM concordance model, valid in General Relativity, is discussed.