skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Realising effective theories of tribrid inflation: are there effects from messenger fields?

Abstract

Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a goodmore » approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less

Authors:
 [1];  [2];  [1]
  1. Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)
  2. (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany)
Publication Date:
Sponsoring Org.:
SCOAP3, CERN, Geneva (Switzerland)
OSTI Identifier:
22458382
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 09; Other Information: PUBLISHER-ID: JCAP09(2015)055; OAI: oai:repo.scoap3.org:11932; Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COSMOLOGICAL INFLATION; FLAVOR MODEL; GAUGE INVARIANCE; GRAND UNIFIED THEORY; MASS; MATTER; PHASE TRANSFORMATIONS; POTENTIALS; SUPERSYMMETRY

Citation Formats

Antusch, Stefan, Max-Planck-Institut für Physik, and Nolde, David. Realising effective theories of tribrid inflation: are there effects from messenger fields?. United States: N. p., 2015. Web. doi:10.1088/1475-7516/2015/09/055.
Antusch, Stefan, Max-Planck-Institut für Physik, & Nolde, David. Realising effective theories of tribrid inflation: are there effects from messenger fields?. United States. doi:10.1088/1475-7516/2015/09/055.
Antusch, Stefan, Max-Planck-Institut für Physik, and Nolde, David. 2015. "Realising effective theories of tribrid inflation: are there effects from messenger fields?". United States. doi:10.1088/1475-7516/2015/09/055.
@article{osti_22458382,
title = {Realising effective theories of tribrid inflation: are there effects from messenger fields?},
author = {Antusch, Stefan and Max-Planck-Institut für Physik and Nolde, David},
abstractNote = {Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.},
doi = {10.1088/1475-7516/2015/09/055},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 09,
volume = 2015,
place = {United States},
year = 2015,
month = 9
}
  • Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUTmore » and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less
  • A scalar potential coupled to other fields of large disparate masses will exhibit power suppression of the quantum loop corrections from these massive fields. Quintessence fields in the dark energy regime and inflaton fields during inflation often have a very large background field value. Thus any other field with its mass dependent on the quintessence/inflaton background field value through a moderate coupling will become very massive during the dark energy/inflation phase and its quantum corrections to the scalar effective potential will be suppressed. This concept is developed in this paper using the decoupling theorem. The problem then reduces to amore » quantitative question of the size of suppression effects within the parameter space of coupling constants, scalar field background value and renormalization scale. Some numerical examples are presented both for inflation and quintessence, but the approach is general and can be applied to any scalar field effective potential. The consequences to dark energy of the decoupling effect developed here is that the quintessence field need not just be an incredibly weakly interacting field, often included as an add-on to generate dark energy and having no other purpose. Instead, this quintessence field could play a central role in the particle physics dynamics at early times and then the other fields simply decouple from it at late times before the onset of the dark energy phase. For inflation a consequence is coupling of the inflaton to other heavy fields can be much larger.« less
  • We discuss the generation of large-scale magnetic fields due to the breaking of the conformal invariance in an electromagnetic field through the CPT-even dimension-6 Chern-Simons-like effective interaction with a fermion current in inflationary cosmology. It is shown that the magnetic fields on the 1 Mpc scale with the field strength of {approx}10{sup -9} G at the present time can be generated even for the scale of the effective interaction being the Planck scale.
  • We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the eta-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W{sub inf} = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflatonmore » potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.« less
  • We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation ismore » dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and {sup p}seudosmooth{sup )} regimes.« less