skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global limits and interference patterns in dark matter direct detection

Abstract

We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limits by up to one order of magnitude in the coupling constants.

Authors:
 [1];  [2]
  1. Institut für Theoretische Physik,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)
  2. Department of Physics and Astronomy, University of Utah,115 South 1400 East #201, Salt Lake City, UT 84112 (United States)
Publication Date:
Sponsoring Org.:
SCOAP3, CERN, Geneva (Switzerland)
OSTI Identifier:
22458362
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 08; Other Information: PUBLISHER-ID: JCAP08(2015)022; OAI: oai:repo.scoap3.org:11385; Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COUPLING CONSTANTS; DETECTION; DIRECT CURRENT; INTERFERENCE; ISOVECTORS; LIMITING VALUES; NONLUMINOUS MATTER; NUCLEON REACTIONS

Citation Formats

Catena, Riccardo, and Gondolo, Paolo. Global limits and interference patterns in dark matter direct detection. United States: N. p., 2015. Web. doi:10.1088/1475-7516/2015/08/022.
Catena, Riccardo, & Gondolo, Paolo. Global limits and interference patterns in dark matter direct detection. United States. doi:10.1088/1475-7516/2015/08/022.
Catena, Riccardo, and Gondolo, Paolo. Thu . "Global limits and interference patterns in dark matter direct detection". United States. doi:10.1088/1475-7516/2015/08/022.
@article{osti_22458362,
title = {Global limits and interference patterns in dark matter direct detection},
author = {Catena, Riccardo and Gondolo, Paolo},
abstractNote = {We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limits by up to one order of magnitude in the coupling constants.},
doi = {10.1088/1475-7516/2015/08/022},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 08,
volume = 2015,
place = {United States},
year = {Thu Aug 13 00:00:00 EDT 2015},
month = {Thu Aug 13 00:00:00 EDT 2015}
}
  • We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
  • An effective interaction approach is used to describe the interactions between the spin 0 or spin 1/2 dark matter particle and the degrees of freedom of the standard model. This approach is applicable to those models in which the dark matter particles do not experience the standard-model interactions, e.g., hidden-sector models. We explore the effects of these effective interaction operators on (i) dark matter relic density, (ii) spin-independent and spin-dependent dark matter-nucleon scattering cross sections, (iii) cosmic antiproton and gamma ray fluxes from the galactic halo due to dark matter annihilation, and (iv) monojet and monophoton production plus missing energymore » at the Tevatron and the Large Hadron Collider (LHC). We combine the experimental data of relic density from WMAP7, spin-independent cross section from XENON100, spin-dependent cross section from XENON10, ZEPLIN-III, and SIMPLE, cosmic antiproton flux from PAMELA, cosmic gamma-ray flux from Fermi-LAT, and the monojet and monophoton data from the Tevatron and the LHC, to put the most comprehensive limits on each effective operator.« less
  • A simple formula is introduced which indicates the amount by which projections of dark matter direct detection experiments are expected to be degraded due to backgrounds.
  • In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the uppermore » limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.« less
  • The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less