skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

Abstract

Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five newmore » Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to around 400 °C.« less

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22443365
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 216; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CRYSTALS; EMISSION SPECTRA; HYDROTHERMAL SYNTHESIS; LIGANDS; LUMINESCENCE; OXALIC ACID; STABILITY; WATER; ZINC

Citation Formats

Yang, Xiao-Le, Shangguan, Yi-Qing, Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN, Xu, Bing, Wang, Bao-Cheng, Xie, Juan, Yuan, Fei, Yang, Meng-Lin, Dong, Fa-Xin, and Xue, Gang-Lin. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand. United States: N. p., 2014. Web. doi:10.1016/J.JSSC.2014.04.017.
Yang, Xiao-Le, Shangguan, Yi-Qing, Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN, Xu, Bing, Wang, Bao-Cheng, Xie, Juan, Yuan, Fei, Yang, Meng-Lin, Dong, Fa-Xin, & Xue, Gang-Lin. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand. United States. doi:10.1016/J.JSSC.2014.04.017.
Yang, Xiao-Le, Shangguan, Yi-Qing, Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN, Xu, Bing, Wang, Bao-Cheng, Xie, Juan, Yuan, Fei, Yang, Meng-Lin, Dong, Fa-Xin, and Xue, Gang-Lin. Fri . "Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand". United States. doi:10.1016/J.JSSC.2014.04.017.
@article{osti_22443365,
title = {Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand},
author = {Yang, Xiao-Le and Shangguan, Yi-Qing and Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN and Xu, Bing and Wang, Bao-Cheng and Xie, Juan and Yuan, Fei and Yang, Meng-Lin and Dong, Fa-Xin and Xue, Gang-Lin},
abstractNote = {Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to around 400 °C.},
doi = {10.1016/J.JSSC.2014.04.017},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 216,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Three new metal-organic frameworks, [Zn(atz)(nic)]{sub n}(1), [Zn(atz)(isonic)]{sub n}.nHisonic(2) and [Cd(atz)(isonic)]{sub n}(3) (Hnic=nicotinic acid, Hisonic=isonicotinic acid), have been firstly synthesized by employing mixed-ligand of pyridinecarboxylate with the in situ generated ligand of 5-amino-tetrazolate(atz{sup -}), and characterized by elemental analysis, IR spectroscopy, TGA and single crystal X-ray diffraction. The results revealed that 1 presents a two-dimensional (2D) 'sql' topological network constructed from the linear chain subunit of Zn(nic){sub 2} and atz{sup -} ligand. A remarkable feature of 2 is a 2-fold interpenetrated diamondoid network with free Hisonic molecules locating in the channels formed by the zigzag chain subunits of Zn(isonic){sub 2}. Complexmore » 3 is a 3D non-interpenetrated pillared framework constructed from the double chain subunits of Cd-COO{sup -}Cd. It possesses a rarely observed (4,6)-connected 'fsc' topology. The thermal stabilities and fluorescent properties of the complexes were investigated. All of these complexes exhibited intense fluorescent emissions in the solid state at room temperature. - Graphical abstract: Three new mixed-ligand d{sup 10} metal complexes have been synthesized by employing mixed-ligand synthetic approach. Complex 1 presents a 2D 'sql' topological network. Complex 2 is a 2-fold interpenetrated diamondoid network with microporous channels. Rarely observed (4,6)-connected 'fsc' topological network was found in complex 3.« less
  • Four Cd(II) and Zn(II) complexes with the in situ-generated ligand of 3-amino-1,2,4-triazolate (AmTAZ{sup -}) were isolated from the solvothermal reactions of the corresponding Cd(II) or Zn(II) salts with 5-amino-1H-1,2,4-triazole-3-carboxylic acid (AmTAZAc). Their structures were determined by single-crystal X-ray diffraction analysis. [Zn(AmTAZ)(CH{sub 3}COO)] (1) presents a two-dimensional framework constructed from Zn(II) ions and {mu}{sub 3}-AmTAZ{sup -} ligands. A remarkable feature of [Zn{sub 4}(AmTAZ){sub 4}(SO{sub 4})(OH)(C{sub 2}O{sub 4}){sub 0.5}].2H{sub 2}O (2) is the construction of the building units of octagonal cylinders which interact with each other by sharing one face or overlapping, resulting in the formation of a three-dimensional framework with threemore » kinds of 1D channels. [Cd(AmTAZ)Br] (3) crystallizes in a chiral space group P2{sub 1}2{sub 1}2{sub 1}, giving a homochiral three-dimensional framework with two types of helical channels (left- and right-handed). Different from the others, the 3-amino-1,2,4-triazole molecules in [Cd(AmTAZH)SO{sub 4}] (4) behave as neutral {mu}{sub 2}-2,4-bridges to connect the two-dimensional CdSO{sub 4} sheets into a three-dimensional framework. Of all, 2 and 3 display different fluorescent properties probably due to different metal ions, coordination environments and structural topologies. - Graphical abstract: The solvothermal reactions of Cd(II) and Zn(II) salts bearing different anions with 5-amino-1H-1,2,4-triazole-3-carboxylic acid (AmTAZAc) produced four Cd(II) and Zn(II) MOFs with the in situ-generated 3-amino-1,2,4-triazolate (AmTAZ{sup -}) ion as ligand, which display different structural topologies and fluorescent properties. Display Omitted.« less
  • Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.more » - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit good luminescent properties.« less
  • Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers, [Zn(L)(1,4-bdc){sub 0.5}] (1), [Zn{sub 1.5}(L)(2,5-pydc)] (2), [Zn(HL)(1,2,4,5-btec){sub 0.5}] (3), and [Cd(HL)(1,2,4,5-btec){sub 0.5}] (4) (1,4-bdc, 1,4-benzenedicarboxylate; 2,5-pydc, 2,5-pyridinedicarboxylate; 1,2,4,5-btec, 1,2,4,5-benzenetetracarboxylate) have been successfully synthesized and analyzed. Compound 1 features the 2D [Zn(L)]{sub n} layers built by μ{sub 3}-L bridging ligands and Zn(II) ions, which are further linked by pillared 1,4-bdc{sup 2−} ligands to form a 2-fold interpenetrating dmc framework. The 3D network of compound 2 can be simplified as a rare 2-nodal (3,6)-connected rtl (rutile) topology. Compound 3 possesses a 2D layer structuremore » which is accomplished by connecting ladder-chains to L ligands. Compound 4 exhibits 2D [Cd(1,2,4,5-btec)] layers with infinite Cd–O–Cd rods and the adjacent 2D networks are further pillared by L with terminal bidentate coordination mode to generate the final 3D structure. The solid-state luminescent studies show that compounds 1–4 display intense fluorescent emissions. - Graphical abstract: Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers have been obtained. All compounds show good luminescence properties at room temperature. Display Omitted - Highlights: • Four Zn(II)/Cd(II)-MOCPs have been successfully prepared with the rigid bifunctional ligand 5-(4-imidazol -1-yl-phenyl) -2H-tetrazole and different aromatic carboxylates mixed ligands. • Compound 2 is a 2-nodal rtl (rutile) net and compound 4 is a binodal (5, 6)-connected net with yav topology. • Compounds 1-4 display intense fluorescent emissions at room temperature.« less
  • The reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with mixed ligands of 5-amino-tetrazole (Hatz) and l,2,4,5-benzenetetracarboxylic acid (H{sub 4}btec) under hydro(solvo)thermal conditions, gave two three-dimensional (3D) porous metal-organic frameworks (MOFs) of ([Zn{sub 3}(atz){sub 2}(btec)(DMF){sub 2}]·DMF·2H{sub 2}O){sub n} (1) and [Zn{sub 2}(Hprz)(atz)(btec)(H{sub 2}O)]{sub n} (2) in the absence and presence of piperazine (prz), respectively. 1 and 2 were characterized by infrared spectra (IR), elemental analyses (EA) and single-crystal/powder X-ray diffraction. In 1, the adjacent 1D [Zn{sub 3}(btec)]{sub n}{sup 2n+} chains are linked together by atz{sup −} ligands to form a 3D porous MOF with 1D tetragonal channels filled with coordinated and guestmore » DMF, and lattice water molecules. In 2, the adjacent 2D [Zn{sub 2}(btec)]{sub n} wavelike sheets are pillared through atz{sup −} ligands to generate a 3D layered-pillared porous MOF with 1D open channels, which are occupied by coordinated Hprz{sup +} cations and coordinated water molecules. Additionally, thermal stabilities and photoluminescent properties of both compounds in the solid-state at room temperature have been investigated and discussed in detail. - Graphical abstract: Two new MOFs constructed from Zn(II) salts with mixed ligands of 5-amino-tetrazole and l,2,4,5-benzenetetracarboxylic acid were synthesized under different reaction conditions. Structural diversities indicate that the reaction solvent system or the presence of organic base play crucial roles in modulating structures of these compounds. And more, their thermal stability and luminescence are also discussed. - Highlights: • Two new Zn(II) MOFs based on mixed ligands were synthesized. • The two Zn(II) MOFs exhibit different structural motifs. • The two Zn(II) MOFs are photoluminscent in the solid state at room temperature.« less