skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uncertainty Quantification in Fission Cross Section Measurements at LANSCE

Abstract

Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

Authors:
Publication Date:
OSTI Identifier:
22436770
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Data Sheets; Journal Volume: 123; Conference: International workshop on nuclear data covariances, Santa Fe, NM (United States), 28 Apr - 1 May 2014; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; CROSS SECTIONS; DATA COVARIANCES; FISSION; FISSION NEUTRONS; KEV RANGE 100-1000; NEUTRON REACTIONS; NEUTRON SOURCES; PLUTONIUM; URANIUM

Citation Formats

Tovesson, F., E-mail: tovesson@lanl.gov. Uncertainty Quantification in Fission Cross Section Measurements at LANSCE. United States: N. p., 2015. Web. doi:10.1016/J.NDS.2014.12.022.
Tovesson, F., E-mail: tovesson@lanl.gov. Uncertainty Quantification in Fission Cross Section Measurements at LANSCE. United States. doi:10.1016/J.NDS.2014.12.022.
Tovesson, F., E-mail: tovesson@lanl.gov. Thu . "Uncertainty Quantification in Fission Cross Section Measurements at LANSCE". United States. doi:10.1016/J.NDS.2014.12.022.
@article{osti_22436770,
title = {Uncertainty Quantification in Fission Cross Section Measurements at LANSCE},
author = {Tovesson, F., E-mail: tovesson@lanl.gov},
abstractNote = {Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.},
doi = {10.1016/J.NDS.2014.12.022},
journal = {Nuclear Data Sheets},
number = ,
volume = 123,
place = {United States},
year = {Thu Jan 15 00:00:00 EST 2015},
month = {Thu Jan 15 00:00:00 EST 2015}
}
  • Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.
  • Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the 235U standard. Recent measurements include the 233, 238U, 239-242Pu, and 243Am neutron-induced fission cross sections. In this paper preliminary results for fission crossmore » sections of 243Am and 233U will be presented.« less
  • Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub thermal energies up to 200 MeV. Parallel-plate ionization chambers are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with existing evaluations and previous data.
  • A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R and D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is converted into a fission cross section ratio.more » In addition to previously measured data new measurements include {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.« less
  • The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less