skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4896611· OSTI ID:22436618
; ; ; ;  [1]
  1. Nucleus Millennium Chemical Processes and Catalysis, Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago (Chile)

At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (∼73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (∼67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp{sup 3} hybridization to form the σC-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state.

OSTI ID:
22436618
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English