skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

Abstract

Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2}more » receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma. - Highlights: • Nicotine from smoking impaired epithelial COX-2-mediated airway relaxation. • Nicotine's effects were at least partially mediated by α7-nicotinic receptors. • Kinin-receptor-mediated airway relaxations are mediated by EP2 receptors in mice. • Nicotine reduced mPGES-1 mRNA and protein expressions in airway smooth muscle. • Dexamethasone could not restore nicotine-impaired airway relaxations.« less

Authors:
;
Publication Date:
OSTI Identifier:
22423782
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 275; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACETYLCHOLINE; ASTHMA; BRADYKININ; DEXAMETHASONE; EPITHELIUM; INFLAMMATION; MESSENGER-RNA; MICE; MONOCYTES; MPG; MUSCLES; NICOTINE; NITRIC OXIDE; PROSTAGLANDINS; RECEPTORS; TISSUE CULTURES; TOBACCO SMOKES

Citation Formats

Xu, Yuan, E-mail: yuan.xu@ki.se, and Cardell, Lars-Olaf. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations. United States: N. p., 2014. Web. doi:10.1016/J.TAAP.2013.12.013.
Xu, Yuan, E-mail: yuan.xu@ki.se, & Cardell, Lars-Olaf. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations. United States. doi:10.1016/J.TAAP.2013.12.013.
Xu, Yuan, E-mail: yuan.xu@ki.se, and Cardell, Lars-Olaf. 2014. "Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations". United States. doi:10.1016/J.TAAP.2013.12.013.
@article{osti_22423782,
title = {Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations},
author = {Xu, Yuan, E-mail: yuan.xu@ki.se and Cardell, Lars-Olaf},
abstractNote = {Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma. - Highlights: • Nicotine from smoking impaired epithelial COX-2-mediated airway relaxation. • Nicotine's effects were at least partially mediated by α7-nicotinic receptors. • Kinin-receptor-mediated airway relaxations are mediated by EP2 receptors in mice. • Nicotine reduced mPGES-1 mRNA and protein expressions in airway smooth muscle. • Dexamethasone could not restore nicotine-impaired airway relaxations.},
doi = {10.1016/J.TAAP.2013.12.013},
journal = {Toxicology and Applied Pharmacology},
number = 1,
volume = 275,
place = {United States},
year = 2014,
month = 2
}
  • Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less
  • Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less
  • Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNAmore » repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.« less
  • Purpose: Cyclooxygenase-2 (COX-2) plays a pivotal role in regulation of radiation-induced apoptosis. The aim of this study was to analyze the relationship between COX-2 expression and postradiotherapy outcomes of patients with cervical cancer. Methods and Materials: Biopsy specimens from 47 consecutive patients who had undergone definitive radiotherapy alone or radiotherapy combined with chemotherapy between October 2002 and November 2004 were investigated. Results: The COX-2 expression rate of the pretreatment samples was 46.1% {+-} 21.0%, and the apoptotic index (AI) 1 week after start of radiotherapy was 2.1% {+-} 0.9%. There was a significant negative correlation between the pretreatment COX-2 expressionmore » and the AI during radiotherapy (r = -0.52, p = 0.0002). Complete response rates were 59% for COX-2-positive patients compared with 80% for COX-2-negative patients (p = 0.12). The 2-year local control rate for COX-2-positive patients was 71.3%, whereas the corresponding rate for COX-2-negative patients was 96.0% (p 0.06). Conclusions: To the best of our knowledge, this is the first report to prove clinically that COX-2 can make cervical squamous cell carcinomas more refractory to radiotherapy by inhibition of radiation-induced apoptosis. Furthermore, expression of COX-2 may be a good indicator to predict local tumor control after radiotherapy. Although long-term results are ultimately needed, the combination therapy of radiotherapy with use of a COX-2 inhibitor could yield improved outcomes for patients with COX-2 expressing cervical cancer.« less
  • Radioiodinated mouse interferon-US ( SVI-MuIFN-US ) bound with high affinity to plasma membrane of L929 murine fibroblasts. The binding was saturable and inhibited by a 100-fold excess of unlabeled MuIFN-US but not by excess mouse INF-el (MuIFN-el). MuIFN-US bound at 4C was very rapidly internalized upon warming of the cells to 37C (t/sub 1/2/ = 1.5 min). Indirect immunoferritin labeling indicated that MuIFN-US was initially located in coated pits and subsequently internalized by receptor-mediated endocytosis. Isolated LZSZ cell nuclei bound SVI-MuIFN-US with a 7-foot higher affinity and higher receptor density than that for the plasma membrane. Binding of the nuclearmore » membrane was inhibited by a 100-fold excess of unlabeled MuIFN-US but not by excess MuIFN-el. Trypsin treatment of nuclei decreased INF binding by 80%, suggesting that the putative nuclear receptors are protein. Specific binding of MuIFN-US to nuclei was also shown by fluorescence and electron microscopy. The authors propose that the very rapid internalization of MuIFN-US by receptor-mediated endocytosis is important in the cellular processing of IFN and that its high-affinity binding to the nuclear membrane suggests the nucleus as an intracellular site of IFN action.« less