skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Luminescence properties of Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} from various Eu{sup 2+} sites for white-light-emitting diodes

Abstract

Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} phosphors were synthesized by solid-state reaction method, and their luminescence properties were investigated. In the emission spectra, several overlapping emission bands originating from various Eu{sup 2+} sites were found. Eu{sup 2+} in Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8} exhibits green emission around 506 nm, and the sample doped with 0.1 mol% Eu{sup 2+} shows the strongest brightness under 365 nm excitation with the quantum efficiency of 63.6%. In the excitation spectra, strong and broad excitation bands from 250 to 450 nm were observed, which could well match with the emission wavelength of the light-emitting diode chip. The fabrication test on the InGaN chip indicates the Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} phosphor could be promising candidate for white light-emitting diodes.

Authors:
;
Publication Date:
OSTI Identifier:
22420690
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BRIGHTNESS; CALCIUM COMPOUNDS; DOPED MATERIALS; EMISSION SPECTRA; EUROPIUM IONS; EXCITATION; FABRICATION; GALLIUM NITRIDES; INDIUM COMPOUNDS; LIGHT EMITTING DIODES; LUMINESCENCE; MAGNESIUM SILICATES; PHOSPHORS; QUANTUM EFFICIENCY; SOLIDS; X-RAY DIFFRACTION

Citation Formats

Zhang, Jia, E-mail: zhangjia@hytc.edu.cn, and Jiang, Cheng. Luminescence properties of Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} from various Eu{sup 2+} sites for white-light-emitting diodes. United States: N. p., 2014. Web. doi:10.1016/J.MATERRESBULL.2014.08.054.
Zhang, Jia, E-mail: zhangjia@hytc.edu.cn, & Jiang, Cheng. Luminescence properties of Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} from various Eu{sup 2+} sites for white-light-emitting diodes. United States. doi:10.1016/J.MATERRESBULL.2014.08.054.
Zhang, Jia, E-mail: zhangjia@hytc.edu.cn, and Jiang, Cheng. Mon . "Luminescence properties of Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} from various Eu{sup 2+} sites for white-light-emitting diodes". United States. doi:10.1016/J.MATERRESBULL.2014.08.054.
@article{osti_22420690,
title = {Luminescence properties of Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} from various Eu{sup 2+} sites for white-light-emitting diodes},
author = {Zhang, Jia, E-mail: zhangjia@hytc.edu.cn and Jiang, Cheng},
abstractNote = {Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} phosphors were synthesized by solid-state reaction method, and their luminescence properties were investigated. In the emission spectra, several overlapping emission bands originating from various Eu{sup 2+} sites were found. Eu{sup 2+} in Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8} exhibits green emission around 506 nm, and the sample doped with 0.1 mol% Eu{sup 2+} shows the strongest brightness under 365 nm excitation with the quantum efficiency of 63.6%. In the excitation spectra, strong and broad excitation bands from 250 to 450 nm were observed, which could well match with the emission wavelength of the light-emitting diode chip. The fabrication test on the InGaN chip indicates the Ca{sub 14}Mg{sub 2}(SiO{sub 4}){sub 8}:Eu{sup 2+} phosphor could be promising candidate for white light-emitting diodes.},
doi = {10.1016/J.MATERRESBULL.2014.08.054},
journal = {Materials Research Bulletin},
number = ,
volume = 60,
place = {United States},
year = {Mon Dec 15 00:00:00 EST 2014},
month = {Mon Dec 15 00:00:00 EST 2014}
}
  • Graphical abstract: - Highlights: • Emission spectrum at 20 K confirms that Eu{sup 2+} ions occupy three sites. • Decay curves of three types of Eu{sup 2+} reflect the characteristics of energy transfer. • The Eu(I) emission is thermally quenched at 323 K. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} has good thermal stability. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} is a promising phosphor for near UV excited white LEDs. - Abstract: A blue-emitting phosphor Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} peaking at 450 nm was synthesized by a solid state reaction. The XRD patterns, luminescence properties, decay curvesmore » of samples as well as their thermal quenching and comparing the luminescence properties with that of commercial material were investigated. At 20 K, the emission spectrum exhibiting two distinct bands peaking at 437 and 473 nm with a shoulder peak at 510 nm can be attributed to the overlap of Eu(I), Eu(II) and Eu(III) emission bands. At 423 K the PL intensity decreases to 80% of the value at room temperature, and the emission wavelength shifts toward high energy. The derived activation energy indicates that the lowest energy level of the Eu{sup 2+} 4f{sup 6}5d{sup 1} state is well isolated from the host lattice conduction band. The PL spectra and chromaticity coordinates are close to those of BAM. Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} could be a potential candidate for near-UV excited white LEDs.« less
  • Highlights: • The photoluminescent property of Sr{sub 2}SiO{sub 4}:Eu{sup 2+} is improved by doping Ca{sup 2+} and Ba{sup 2+}. • The emission spectra red-shift obviously by doping Ca{sup 2+} into Sr{sub 2}SiO{sub 4}:Eu{sup 2+}. • The thermal stability is enhanced by doping Ba{sup 2+} into (Sr,Ca){sub 2}SiO{sub 4}:Eu{sup 2+}. • The improved phosphors can combine blue-LED chips to generate warm white light. - Abstract: A series of phosphors (Sr{sub 0.995−x−y−z}Ca{sub x}Ba{sub y}Mg{sub z}){sub 2}SiO{sub 4}:0.01Eu{sup 2+} (0 ≤ x ≤ 0.45, 0 ≤ y ≤ 0.015, 0 ≤ z ≤ 0.35) were synthesized by solid state reaction. Their phase compositionsmore » and photoluminescent properties were investigated in detail. The X-ray diffraction analysis indicates the impurity phase of SrSiO{sub 3} is formed only when z ≥ 0.25. A photoluminescence investigation shows, with x increasing the emission spectra of the phosphors (0 ≤ x ≤ 0.45, 0 ≤ y ≤ 0.015, z = 0) obviously red-shift, the corresponding color tones shift from yellow to orange–yellow and their CCTs reduce from 2875 to 2237 K. All the results are beneficial for the phosphors to combining blue light-emitting diode chips to generate warm white light. Besides, the thermal stability of the phosphor (x = 0.36, y = z = 0) is enhanced by doping Ba{sup 2+}, due to the greater activation energy for the compounds containing barium.« less
  • Highlights: • A novel red phosphor Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} was synthesized and investigated firstly. • The structure and characteristic luminescence properties are discussed. • The excellent thermal stability was found and investigated. • It has good color saturation, the CIE is close to that of commercial Y{sub 2}O{sub 3}:Eu{sup 3+}. - Abstract: A series of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} red phosphors were successfully synthesized. X-ray diffraction analysis indicates that all the samples are single phased. The luminescence property is investigated in detail by measuring their photoluminescence excitation and emission spectra. Ca{sub 19}Mg{sub 2}(PO{submore » 4}){sub 14}:Sm{sup 3+} phosphors show strong absorption in 400–410 nm region, which is suitable for application in LEDs. When excited at 403 nm, Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphor can emit red emission with CIE chromaticity coordinates (0.615, 0.384). The optimal doping concentration of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} is measured to be 0.02. The thermal quenching property is also measured and compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+} (Topstar, TXC-RIA). The results indicate Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphors have potential to serve as a red phosphor for white LEDs.« less
  • Highlights: • Eu{sup 3+} ions occupy C{sub 1} point group of the Zr{sup 4+} site in ZrW{sub 2}O{sub 8} crystals. • The optimum doping concentration of Eu{sup 3+} was determined for the red emission. • ZrW{sub 2}O{sub 8}:Eu possess high quantum efficiency and suitable chromaticity coordinates. - Abstract: ZrW{sub 2}O{sub 8}:Eu{sup 3+} nanophosphors (ca. 60 nm) with different Eu{sup 3+} doping concentrations were obtained using hydrothermal syntheses. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence excitation and emission spectra as well as decay curve measurements were used for the characterization. Under 466 nm excitation, strong redmore » emission at 616 nm corresponding to {sup 5}D{sub 0}–{sup 7}F{sub 2} transition of Eu{sup 3+} was observed for ZrW{sub 2}O{sub 8}:Eu{sup 3+} (9 mol%) phosphors. The values of intensity parameter Ω{sub 2} and Ω{sub 4} are 17.82 × 10{sup −20} cm{sup 2} and 1.092 × 10{sup −20} cm{sup 2}, respectively. The high quantum efficiency of 83.5% of the ZrW{sub 2}O{sub 8}:Eu{sup 3+} (9 mol%) suggests this material could be promising red phosphor for generating white light in phosphor-converted white light-emitting diodes (LED)« less
  • This paper reports that the synthesis and luminescence characteristics of Eu{sup 2+} activated calcium magnesium chlorosilicate, Ca{sub 8}Mg(SiO{sub 4}){sub 4}Cl{sub 2}, have been reported and analyzed. The emission spectrum of Eu{sup 2+} is composed to two separate bands with peaks at 507 and 428 nm, which result from the Eu{sup 2+} centers in different crystallographic sites. At room temperature, the excitation spectrum of the very strong 507 nm emission shows not only the broad 4f{sup 7}-4f{sup 6}5d excitation bands, but also the fine structure resulting from the splitting of 4f{sup 6} configuration in the 4f{sup 6}5d excited state. This structuremore » is explained by the high covalency degree of the cation-anion bonds in this system. Efficient energy transfer between the two inequivalent Eu{sup 2+} centers has been evaluated quantitatively.« less