skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation

Abstract

The prepared g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited the enhanced photocatalytic activity under visible-light irradiation due to the stronger ability in separation of electron–hole pairs, which was proven by the transient photocurrent measurement. - Highlights: • The coupled Cu{sub 2}O with g-C{sub 3}N{sub 4} of narrow-band-gap semiconductor has been designed. • g-C{sub 3}N{sub 4}/Cu{sub 2}O is prepared via an alcohol-aqueous based on chemical precipitation method. • g-C{sub 3}N{sub 4}/Cu{sub 2}O exhibits the enhanced photocatalytic activity under visible-light. • The enhanced photocatalytic activity is proven by the transient photocurrent test. • A mechanism for the visible-light-driven photocatalysis of g-C{sub 3}N{sub 4}/Cu{sub 2}O is revealed. - Abstract: To overcome the drawback of low photocatalytic efficiency brought by electron–hole pairs recombination and narrow photo-response range, a novel g-C{sub 3}N{sub 4}/Cu{sub 2}O composite photocatalyst was designed and prepared successfully. Compared with bare Cu{sub 2}O and g-C{sub 3}N{sub 4}, the g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited significantly enhanced photocatalytic activity for acid orange-II (AO-II) degradation under visible light irradiation. Based on energy band positions, the mechanism of enhanced visible-light photocatalytic activity was proposed.

Authors:
; ; ; ;  [1];  [2];  [1]
  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)
  2. Centre for Clean Environment and Energy, Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222 (Australia)
Publication Date:
OSTI Identifier:
22420524
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 56; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALCOHOLS; CARBON NITRIDES; CATALYSTS; COMPARATIVE EVALUATIONS; COMPOSITE MATERIALS; COPPER OXIDES; ELECTRONS; HOLES; IRRADIATION; NANOSTRUCTURES; PHOTOCATALYSIS; PHOTOELECTRON SPECTROSCOPY; PRECIPITATION; RECOMBINATION; SEMICONDUCTOR MATERIALS; SYNTHESIS; TRANSIENTS; VISIBLE RADIATION

Citation Formats

Peng, Biyu, Zhang, Shengsen, Yang, Siyuan, Wang, Hongjuan, Yu, Hao, Zhang, Shanqing, and Peng, Feng, E-mail: cefpeng@scut.edu.cn. Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation. United States: N. p., 2014. Web. doi:10.1016/J.MATERRESBULL.2014.04.042.
Peng, Biyu, Zhang, Shengsen, Yang, Siyuan, Wang, Hongjuan, Yu, Hao, Zhang, Shanqing, & Peng, Feng, E-mail: cefpeng@scut.edu.cn. Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation. United States. doi:10.1016/J.MATERRESBULL.2014.04.042.
Peng, Biyu, Zhang, Shengsen, Yang, Siyuan, Wang, Hongjuan, Yu, Hao, Zhang, Shanqing, and Peng, Feng, E-mail: cefpeng@scut.edu.cn. Fri . "Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation". United States. doi:10.1016/J.MATERRESBULL.2014.04.042.
@article{osti_22420524,
title = {Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation},
author = {Peng, Biyu and Zhang, Shengsen and Yang, Siyuan and Wang, Hongjuan and Yu, Hao and Zhang, Shanqing and Peng, Feng, E-mail: cefpeng@scut.edu.cn},
abstractNote = {The prepared g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited the enhanced photocatalytic activity under visible-light irradiation due to the stronger ability in separation of electron–hole pairs, which was proven by the transient photocurrent measurement. - Highlights: • The coupled Cu{sub 2}O with g-C{sub 3}N{sub 4} of narrow-band-gap semiconductor has been designed. • g-C{sub 3}N{sub 4}/Cu{sub 2}O is prepared via an alcohol-aqueous based on chemical precipitation method. • g-C{sub 3}N{sub 4}/Cu{sub 2}O exhibits the enhanced photocatalytic activity under visible-light. • The enhanced photocatalytic activity is proven by the transient photocurrent test. • A mechanism for the visible-light-driven photocatalysis of g-C{sub 3}N{sub 4}/Cu{sub 2}O is revealed. - Abstract: To overcome the drawback of low photocatalytic efficiency brought by electron–hole pairs recombination and narrow photo-response range, a novel g-C{sub 3}N{sub 4}/Cu{sub 2}O composite photocatalyst was designed and prepared successfully. Compared with bare Cu{sub 2}O and g-C{sub 3}N{sub 4}, the g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited significantly enhanced photocatalytic activity for acid orange-II (AO-II) degradation under visible light irradiation. Based on energy band positions, the mechanism of enhanced visible-light photocatalytic activity was proposed.},
doi = {10.1016/J.MATERRESBULL.2014.04.042},
journal = {Materials Research Bulletin},
number = ,
volume = 56,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • A series of porous g-C{sub 3}N{sub 4}/La (PGCN/La) materials used as photocatalyst for the degradation of phenol were prepared by two steps. The photocatalysts were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), thermogravimetry (TG), Brunauer–Emmett–Teller (BET), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). From the TEM morphology, the porous structure of g-C{sub 3}N{sub 4} could be successfully controlled; from BET results, BET specific surface area of porous g-C{sub 3}N{sub 4} (PGCN) sample increases with the increasing of urea mass ratio. Compared with PGCN material (PGCN-50), PGCN/La sample (PGCN-50/La-5) could exhibit anmore » enhanced photocatalytic activity and has the best degradation efficiency of 98.6% within 50 min under visible light irradiation. Photocatalytic reaction follows the first-order model kinetics; and PGCN-50/La-5 photocatalyst shows the largest reaction rate among all samples which is nearly 2.96 times higher than that of pure PGCN-50. The present work illustrates that the photocatalytic activity of porous g-C{sub 3}N{sub 4} was improved by the addition of La and PGCN-50/La-5 has potential application in the removal of phenol or other organic molecular from wastewater. - Graphical abstract: Porous g-C{sub 3}N{sub 4}/La photocatalyst is synthesized and its removal of phenol application has been explored. - Highlights: • Porous PGCN/La photocatalyst was prepared successfully by hydrothermal method. • PGCN/La has a highest degradation efficiency of 98.6% for phenol within 50 min. • The reaction rate of is nearly 2.96 times higher than that of pure PGCN. • As prepared material has potential application in removal of phenol from wastewater.« less
  • A novel heterojunction structured composite photocatalyst CdS/Au/g-C{sub 3}N{sub 4} has been developed by depositing CdS/Au with a core (Au)-shell (CdS) structure on the surface of g-C{sub 3}N{sub 4}. The photocatalytic hydrogen production activity of the developed photocatalyst was evaluated under visible-light irradiation (λ > 420 nm) using methanol as a sacrificial reagent. As a result, its activity is about 125.8 times higher than that of g-C{sub 3}N{sub 4} and is even much higher than that of Pt/g-C{sub 3}N{sub 4}. The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in themore » CdS/Au/g-C{sub 3}N{sub 4} system.« less
  • Direct Z-scheme NiTiO3/g-C3N4 heterojunctions were successfully assembled by using simple calcination method and the photoelectrochemical and photocatalytic performance were investigated by light emitting diode (LED). The photoanode composed by the heterojunction with about 50 wt% NiTiO3 content exhibits the best photoelectrochemical activity with photoconversion efficiency up to 0.066%, which is 4.4 and 3.13 times larger than NiTiO3 or g-C3N4. The remarkably enhanced photoelectrochemical and photocatalytic activity of the heterojunction can be due to the efficiently photogenerated electron-hole separation by a Z-scheme mechanism.
  • Highlights: • The photocatalyst was hydrothermally prepared by adjusting the ratio of Ag to V. • Multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} obtained exhibited multi-morphological features. • The photocatalyst exhibited strong visible light driven photoactivity towards RhB. - Abstract: A novel Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst was synthesized by adjusting the molar ratio of silver–vanadium (Ag–V) in a facile hydrothermal method to obtain multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst. The photocatalytic activity of the prepared samples was quantified by the degradation of Rhodamine B (RhB) model organic pollutant under visible light irradiation.more » Compared to pure Ag{sub 3}VO{sub 4}, Ag{sub 4}V{sub 2}O{sub 7} and P25 TiO{sub 2}, respectively, the as-synthesized multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} powders gave rise to a significantly higher photocatalytic activity, achieving up to 99% degradation of RhB in 2 h under visible light. This enhanced photocatalytic performance was attributed to the effect of the multi-phase Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7} photocatalyst and the surface plasmon resonance (SPR) of the incorporated metallic silver (Ag{sup 0}) nanoparticles (NPs) generated during the photocatalysis, as evidenced by post-use characterization, resulting in improved visible light absorption and electron-hole (e{sup −}-h{sup +}) separation. A mechanism was proposed for the photocatalytic degradation of RhB on the surface of Ag{sub 2}O/Ag{sub 3}VO{sub 4}/Ag{sub 4}V{sub 2}O{sub 7}.« less
  • In this paper, a new g-C 3N 4/SrTa 2O 6 heterojunction photocatalyst was designed and prepared by chimie douce (soft chemistry) method where carbon nitride (g-C 3N 4) was deposited over the metastable perovskite phase of SrTa 2O 6. The morphological study of the heterojunction using SEM and STEM revealed that g-C 3N 4 nanofibers are dispersed uniformly on the surface of SrTa 2O 6 plates leading to the intimate contact between them. The heterojunction could achieve a high and stable visible light photocatalytic H 2 generation of 137 mmol/h/mole of g-C 3N 4, which is much larger than themore » amount of hydrogen generated by one mole of pristine g-C 3N 4. Finally, a plausible mechanism for the observed enhanced photocatalytic activity for the heterojunction is proposed on the basis of effective charge separation of photogenerated electron-hole pairs, supported by band position calculations and photo-physical properties of g-C 3N 4 and SrTa 2O 6.« less