skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Workflow Enhancement (WE) Improves Safety in Radiation Oncology: Putting the WE and Team Together

Abstract

Purpose: To review the impact of a workflow enhancement (WE) team in reducing treatment errors that reach patients within radiation oncology. Methods and Materials: It was determined that flaws in our workflow and processes resulted in errors reaching the patient. The process improvement team (PIT) was developed in 2010 to reduce errors and was later modified in 2012 into the current WE team. Workflow issues and solutions were discussed in PIT and WE team meetings. Due to tensions within PIT that resulted in employee dissatisfaction, there was a 6-month hiatus between the end of PIT and initiation of the renamed/redesigned WE team. In addition to the PIT/WE team forms, the department had separate incident forms to document treatment errors reaching the patient. These incident forms are rapidly reviewed and monitored by our departmental and institutional quality and safety groups, reflecting how seriously these forms are treated. The number of these incident forms was compared before and after instituting the WE team. Results: When PIT was disbanded, a number of errors seemed to occur in succession, requiring reinstitution and redesign of this team, rebranded the WE team. Interestingly, the number of incident forms per patient visits did not change when comparing 6 monthsmore » during the PIT, 6 months during the hiatus, and the first 6 months after instituting the WE team (P=.85). However, 6 to 12 months after instituting the WE team, the number of incident forms per patient visits decreased (P=.028). After the WE team, employee satisfaction and commitment to quality increased as demonstrated by Gallup surveys, suggesting a correlation to the WE team. Conclusions: A team focused on addressing workflow and improving processes can reduce the number of errors reaching the patient. Time is necessary before a reduction in errors reaching patients will be seen.« less

Authors:
 [1];  [2]; ; ; ; ;  [1];  [1];  [2]
  1. Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
22420363
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 89; Journal Issue: 4; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCIDENTS; COMPARATIVE EVALUATIONS; ERRORS; MEDICAL PERSONNEL; MEETINGS; PATIENTS; RADIOTHERAPY; REVIEWS; SAFETY

Citation Formats

Chao, Samuel T., E-mail: chaos@ccf.org, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio, Meier, Tim, Hugebeck, Brian, Reddy, Chandana A., Godley, Andrew, Kolar, Matt, Suh, John H., and Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio. Workflow Enhancement (WE) Improves Safety in Radiation Oncology: Putting the WE and Team Together. United States: N. p., 2014. Web. doi:10.1016/J.IJROBP.2014.01.024.
Chao, Samuel T., E-mail: chaos@ccf.org, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio, Meier, Tim, Hugebeck, Brian, Reddy, Chandana A., Godley, Andrew, Kolar, Matt, Suh, John H., & Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio. Workflow Enhancement (WE) Improves Safety in Radiation Oncology: Putting the WE and Team Together. United States. doi:10.1016/J.IJROBP.2014.01.024.
Chao, Samuel T., E-mail: chaos@ccf.org, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio, Meier, Tim, Hugebeck, Brian, Reddy, Chandana A., Godley, Andrew, Kolar, Matt, Suh, John H., and Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio. Tue . "Workflow Enhancement (WE) Improves Safety in Radiation Oncology: Putting the WE and Team Together". United States. doi:10.1016/J.IJROBP.2014.01.024.
@article{osti_22420363,
title = {Workflow Enhancement (WE) Improves Safety in Radiation Oncology: Putting the WE and Team Together},
author = {Chao, Samuel T., E-mail: chaos@ccf.org and Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio and Meier, Tim and Hugebeck, Brian and Reddy, Chandana A. and Godley, Andrew and Kolar, Matt and Suh, John H. and Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio},
abstractNote = {Purpose: To review the impact of a workflow enhancement (WE) team in reducing treatment errors that reach patients within radiation oncology. Methods and Materials: It was determined that flaws in our workflow and processes resulted in errors reaching the patient. The process improvement team (PIT) was developed in 2010 to reduce errors and was later modified in 2012 into the current WE team. Workflow issues and solutions were discussed in PIT and WE team meetings. Due to tensions within PIT that resulted in employee dissatisfaction, there was a 6-month hiatus between the end of PIT and initiation of the renamed/redesigned WE team. In addition to the PIT/WE team forms, the department had separate incident forms to document treatment errors reaching the patient. These incident forms are rapidly reviewed and monitored by our departmental and institutional quality and safety groups, reflecting how seriously these forms are treated. The number of these incident forms was compared before and after instituting the WE team. Results: When PIT was disbanded, a number of errors seemed to occur in succession, requiring reinstitution and redesign of this team, rebranded the WE team. Interestingly, the number of incident forms per patient visits did not change when comparing 6 months during the PIT, 6 months during the hiatus, and the first 6 months after instituting the WE team (P=.85). However, 6 to 12 months after instituting the WE team, the number of incident forms per patient visits decreased (P=.028). After the WE team, employee satisfaction and commitment to quality increased as demonstrated by Gallup surveys, suggesting a correlation to the WE team. Conclusions: A team focused on addressing workflow and improving processes can reduce the number of errors reaching the patient. Time is necessary before a reduction in errors reaching patients will be seen.},
doi = {10.1016/J.IJROBP.2014.01.024},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 89,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2014},
month = {Tue Jul 15 00:00:00 EDT 2014}
}
  • Purpose: Successful radiation therapy requires multi-step processes susceptible to unnecessary delays that can negatively impact clinic workflow, patient satisfaction, and safety. This project applied process improvement tools to assess workflow bottlenecks and identify solutions to barriers for effective implementation. Methods: We utilized the DMAIC (define, measure, analyze, improve, control) methodology, limiting our scope to the treatment planning process. From May through December of 2014, times and dates of each step from simulation to treatment were recorded for 507 cases. A value-stream map created from this dataset directed our selection of outcome measures (Y metrics). Critical goals (X metrics) that wouldmore » accomplish the Y metrics were identified. Barriers to actions were binned into control-impact matrices, in order to stratify them into four groups: in/out of control and high/low impact. Solutions to each barrier were then categorized into benefit-effort matries to identify those of high benefit and low effort. Results: For 507 cases, the mean time from simulation to treatment was 235 total hours. The mean process and wait time were 60 and 132 hours, respectively. The Y metric was to increase the ratio of all non-emergent plans completed the business day prior to treatment from 47% to 75%. Project X metrics included increasing the number of IMRT QAs completed at least 24 hours prior to treatment from 19% to 80% and the number of non-IMRT plans approved at least 24 hours prior to treatment from 33% to 80%. Intervals from simulation to target contour and from initial plan completion to plan approval were identified as periods that could benefit from intervention. Barriers to actions were binned into control-impact matrices and solutions by benefit-effort matrices. Conclusion: The DMAIC method can be successfully applied in radiation therapy clinics to identify inefficiencies and prioritize solutions for the highest impact.« less
  • Purpose: To transition from an in-house incident reporting system to a ROILS standards system with the intent to develop a safety focused culture in the Department and enroll in ROILS. Methods: Since the AAPM Safety Summit (2010) several safety and reporting systems have been implemented within the Department. Specific checklists and SBAR reporting systems were introduced. However, the active learning component was lost due to reporting being viewed with distrust and possible retribution.To Facilitate introducing ROILS each leader in the Department received a copy of the ROILS participation guide. Four specific tasks were assigned to each leader: develop a reportingmore » tree, begin the ROILS based system, facilitate adopting ROILS Terminology, and educate the staff on expectations of safety culture. Next, the ROILS questions were broken down into area specific questions (10–15) per departmental area. Excel spreadsheets were developed for each area and setup for error reporting entries. The Role of the Process Improvement Committee (PI) has been modified to review and make recommendations based on the ROILS entries. Results: The ROILS based Reporting has been in place for 4 months. To date 64 reports have been entered. Since the adoption of ROILS the reporting of incidents has increased from 2/month to 18/month on average. Three reports had a dosimetric effect on the patient (<5%) dose variance. The large majority of entries have been Characterized as Processes not followed or not sure how to Characterize, and Human Behavior. Conclusion: The majority of errors are typo’s that create confusion. The introduction of the ROILS standards has provided a platform for making changes to policies that increase patient safety. The goal is to develop a culture that sees reporting at a national level as a safe and effective way to improve our safety, and to dynamically learn from other institutions reporting.« less
  • Purpose: To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). Methods and Materials: A sample of 5979 treatment site–specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Results: Of 601 evaluablemore » responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Conclusion: Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices.« less
  • Purpose: Implement a center wide communication system that increases interdepartmental transparency and accountability while decreasing redundant work and treatment delays by actively monitoring treatment planning workflow. Methods: Intake Management System (IMS), a program developed by ProCure Treatment Centers Inc., is a multi-function database that stores treatment planning process information. It was devised to work with the oncology information system (Mosaiq) to streamline interdepartmental workflow.Each step in the treatment planning process is visually represented and timelines for completion of individual tasks are established within the software. The currently active step of each patient’s planning process is highlighted either red or greenmore » according to whether the initially allocated amount of time has passed for the given process. This information is displayed as a Treatment Planning Process Monitor (TPPM), which is shown on screens in the relevant departments throughout the center. This display also includes the individuals who are responsible for each task.IMS is driven by Mosaiq’s quality checklist (QCL) functionality. Each step in the workflow is initiated by a Mosaiq user sending the responsible party a QCL assignment. IMS is connected to Mosaiq and the sending or completing of a QCL updates the associated field in the TPPM to the appropriate status. Results: Approximately one patient a week is identified during the workflow process as needing to have his/her treatment start date modified or resources re-allocated to address the most urgent cases. Being able to identify a realistic timeline for planning each patient and having multiple departments communicate their limitations and time constraints allows for quality plans to be developed and implemented without overburdening any one department. Conclusion: Monitoring the progression of the treatment planning process has increased transparency between departments, which enables efficient communication. Having built-in timelines allows easy prioritization of tasks and resources and facilitates effective time management.« less
  • Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less