skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats

Abstract

Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe themore » ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver.« less

Authors:
 [1];  [2]; ; ; ; ;  [1];  [3];  [4]; ;  [1];  [1]
  1. School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China)
  2. (Hong Kong)
  3. Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)
  4. Cancer Research Institute of Southern Medical University, Guangzhou (China)
Publication Date:
OSTI Identifier:
22416649
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 450; Journal Issue: 1; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALCOHOLS; ANIMAL TISSUES; BLOOD; DISEASES; FATS; LIVER; LIVER CELLS; METABOLISM; MORPHOLOGY; NUTRIENTS; PATHOLOGICAL CHANGES; RATS; SCANNING ELECTRON MICROSCOPY; TRANSMISSION ELECTRON MICROSCOPY; VISIBLE RADIATION

Citation Formats

Peng, Qiuxian, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Zhang, Qin, Xiao, Wei, Shao, Meng, Fan, Qin, Zhang, Hongwei, Zou, Yukai, Li, Xin, Xu, Wenxue, Mo, Zhixian, and Cai, Hongbing, E-mail: chbing2008@163.com. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats. United States: N. p., 2014. Web. doi:10.1016/J.BBRC.2014.06.035.
Peng, Qiuxian, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Zhang, Qin, Xiao, Wei, Shao, Meng, Fan, Qin, Zhang, Hongwei, Zou, Yukai, Li, Xin, Xu, Wenxue, Mo, Zhixian, & Cai, Hongbing, E-mail: chbing2008@163.com. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats. United States. doi:10.1016/J.BBRC.2014.06.035.
Peng, Qiuxian, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Zhang, Qin, Xiao, Wei, Shao, Meng, Fan, Qin, Zhang, Hongwei, Zou, Yukai, Li, Xin, Xu, Wenxue, Mo, Zhixian, and Cai, Hongbing, E-mail: chbing2008@163.com. Fri . "Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats". United States. doi:10.1016/J.BBRC.2014.06.035.
@article{osti_22416649,
title = {Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats},
author = {Peng, Qiuxian and Department of Biology, Hong Kong Baptist University, Kowloon Tong and Zhang, Qin and Xiao, Wei and Shao, Meng and Fan, Qin and Zhang, Hongwei and Zou, Yukai and Li, Xin and Xu, Wenxue and Mo, Zhixian and Cai, Hongbing, E-mail: chbing2008@163.com},
abstractNote = {Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver.},
doi = {10.1016/J.BBRC.2014.06.035},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 450,
place = {United States},
year = {Fri Jul 18 00:00:00 EDT 2014},
month = {Fri Jul 18 00:00:00 EDT 2014}
}
  • Research highlights: {yields} NDGA decreases high-fat diet-induced body weight gain and adiposity. {yields} NDGA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} NDGA improves lipid storage in vitro through altering lipid regulatory proteins. {yields} Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepaticmore » triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR){alpha}, PPAR{gamma} coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.« less
  • Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposuremore » was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced Cyp2b10 and Cyp3a11 (CAR/PXR target genes) • Aroclor 1260 at 200 mg/kg induced Cyp1a2 (AhR target gene)« less
  • Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into themore » extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.« less
  • Highlights: {yields} Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. {yields} PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. {yields} PRPA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remainsmore » unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor {delta} (PPAR{delta}) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPAR{delta} protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. Consistent with the in vitro results, PRPA activated AMPK signaling and altered the expression of lipid metabolism-related proteins in liver and skeletal muscle. Taken together, these findings demonstrate that PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects.« less
  • Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3 pathway.« less