skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

Abstract

Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α wasmore » significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.« less

Authors:
; ;  [1]; ;  [1];  [2];  [1];  [1];  [2]
  1. Linus Pauling Institute, Oregon State University (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
22416629
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 450; Journal Issue: 1; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AGING; AMP; BRAIN; CARBOXYLASE; CARBOXYLIC ACIDS; CORTICOSTERONE; ELDERLY PEOPLE; HOMEOSTASIS; LIPIDS; LIVER; METABOLISM; RATS; RECEPTORS; STEROLS; VIRUSES; VISIBLE RADIATION

Citation Formats

Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University, Moreau, Régis, Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu, and Biochemistry Biophysics Department, Oregon State University. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age. United States: N. p., 2014. Web. doi:10.1016/J.BBRC.2014.05.112.
Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University, Moreau, Régis, Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu, & Biochemistry Biophysics Department, Oregon State University. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age. United States. doi:10.1016/J.BBRC.2014.05.112.
Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University, Moreau, Régis, Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu, and Biochemistry Biophysics Department, Oregon State University. Fri . "Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age". United States. doi:10.1016/J.BBRC.2014.05.112.
@article{osti_22416629,
title = {Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age},
author = {Keith, Dove and Finlay, Liam and Butler, Judy and Gómez, Luis and Smith, Eric and Biochemistry Biophysics Department, Oregon State University and Moreau, Régis and Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu and Biochemistry Biophysics Department, Oregon State University},
abstractNote = {Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.},
doi = {10.1016/J.BBRC.2014.05.112},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 450,
place = {United States},
year = {Fri Jul 18 00:00:00 EDT 2014},
month = {Fri Jul 18 00:00:00 EDT 2014}
}
  • The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of singlemore » and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.« less
  • A central circadian clock located in the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus entrains peripheral clocks through both neural and humoral factors. Although candidates for entrainment factors have been described, their details remain obscure. Here, we screened ligands for nuclear receptors that affect CLOCK/BMAL1-dependent transactivation of the mouse Period1 (mPer1) gene in NIH3T3 cells. We found that retinoic acids (RAs) significantly up-regulate mPer1 expression in an E-box-dependent manner. We also found that RAs up-regulate the expression of other E-box-dependent circadian genes such as mPer2, arginine vasopressin (mAVP), and peroxisome proliferator-activated receptor {alpha} (mPPAR{alpha}). Surprisingly, the effect of RAs onmore » CLOCK/BMAL1 (E-box)-dependent mRNA expression was bidirectional and depended on the presence of exogenous retinoic acid receptor {alpha} (RAR{alpha}). These results suggest that RAs regulate the CLOCK/BMAL1-dependent transcription of circadian genes in a complex manner.« less
  • The DNA sequence motif ATTTGCAT (octamer) or its inverse complement has been identified as an evolutionarily conserved element in the promoter region of immunoglobulin genes. Two major DNA-binding proteins that bind in a sequence-specific manner to the octamer DNA sequence have been identified in mammalian species--a ubiquitously expressed protein (Oct-1) and a lymphoid-specific protein (Oct-2). During characterization of the promoter region of the chicken immunoglobulin light chain gene, the authors identified two homologous octamer-binding proteins in chicken B cells. when the cloning of the human gene for Oct-2 revealed it to be a member of a distinct family of homeoboxmore » genes, they sought to determine if the human Oct-2 cDNA could be used to identify homologous chicken homeobox genes. Using a human Oct-2 homeobox-specific DNA probe, they were able to identify 6-10 homeobox-containing genes in the chicken genome, demonstrating that the Oct-2-related subfamily of homeobox genes exists in avian species. DNA sequence analysis revealed it to be the chicken homologue of the human Oct-1 gene. Together, the data show that the POU-containing subfamily of homeobox genes have been highly conserved during vertebrate evolution, apparently as a result of selection for their DNA-binding and transcriptional regulatory properties.« less
  • Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less